Chromosphere above sunspot umbra

Sowmya Krishnamurthy Alexander I. Shapiro Natalie A. Krivova Rinat V. Tagirov Sami K. Solanki

Max Planck Institute for Solar System Research Göttingen, Germany

krishnamurthy@mps.mpg.de

Modelling of solar irradiance variability

Decompose the solar disk into different features

Compute spectra in non-LTE using 1D models

Umbral and penumbral models lack chromosphere

Concern for the far UV and strong spectral lines

From Atacama Large Millimeter/sub-millimeter Array (ALMA)

AR 12470

ALMA 3 mm

HMI continuum

From James Clerk Maxwell Telescope (JCMT)

Lindsey & Kopp (1995)

Observations in mm/sub-mm

Radiative transfer code

Non-LTE Spectral SYnthesis (NESSY)

- * Solves the 1D spherically symmetric non-LTE radiative transfer equation for a given temperature and density stratification
- Population equations are solved simultaneously with the radiative transfer equation for elements from hydrogen to zinc
- Performs spectral synthesis taking into account millions of spectral lines

Model atmospheres

Quiet Sun spectrum: FAL99-C

Umbral spectrum: Severino

Umbral models - an overview

LTE vs non-LTE contrasts

Observations in mm/sub-mm

Contrasts from FAL99-C and Severino models

How do we construct the model?

Temperature structure

New model

Contrasts from FAL99-C and Severino models

New model

Summary

- * The existing models for the sunspot umbra and penumbra either lack chromosphere or have a poor representation of it
- * Using the recent observations from ALMA along with the ones from JCMT, we construct a model for the umbra with a better constrained chromosphere

ALMA and IRIS

Summary

- * The existing models for the sunspot umbra and penumbra either lack chromosphere or have a poor representation of it
- * Using the recent observations from ALMA along with the ones from JCMT, we construct a model for the umbra with a better constrained chromosphere
- * Potential additional constraints from IRIS data
- Next step is to improve the chromosphere in penumbral models
- Implement these updated models in SATIRE to reconstruct the irradiance variability in the UV
- Use the models to interpret the observations from future missions such as Aditya-L1 and Sunrise-3

Thank you for your attention!