

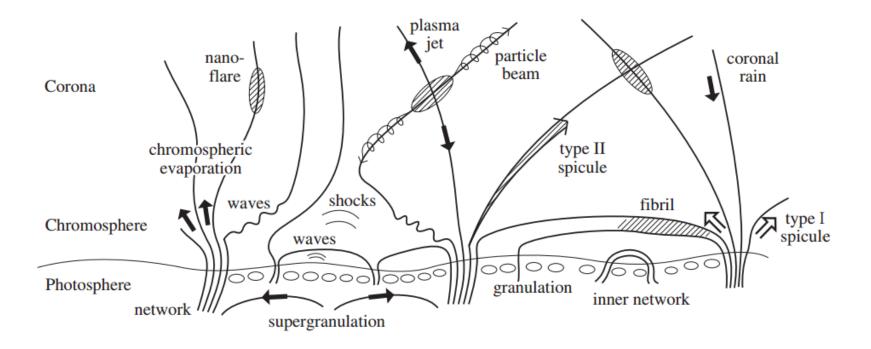
Spectral Analysis of the Chromospheric Network via Si IV emission lines

Tayebeh Farjadnia¹, Neda Dadashi¹, Maria Madjarska²

1. Department of physics, University of Zanjan, Zanjan, Iran

2. Max Planck Institute for Solar System Research, Göttingen, Germany

IRIS-10 Meeting, 4-8 November, Institute of India Astrophysics, Bangalore, India


Outline

- Introduction
- Chromospheric network and internetwork
- Data properties
- Data analysis
- Results

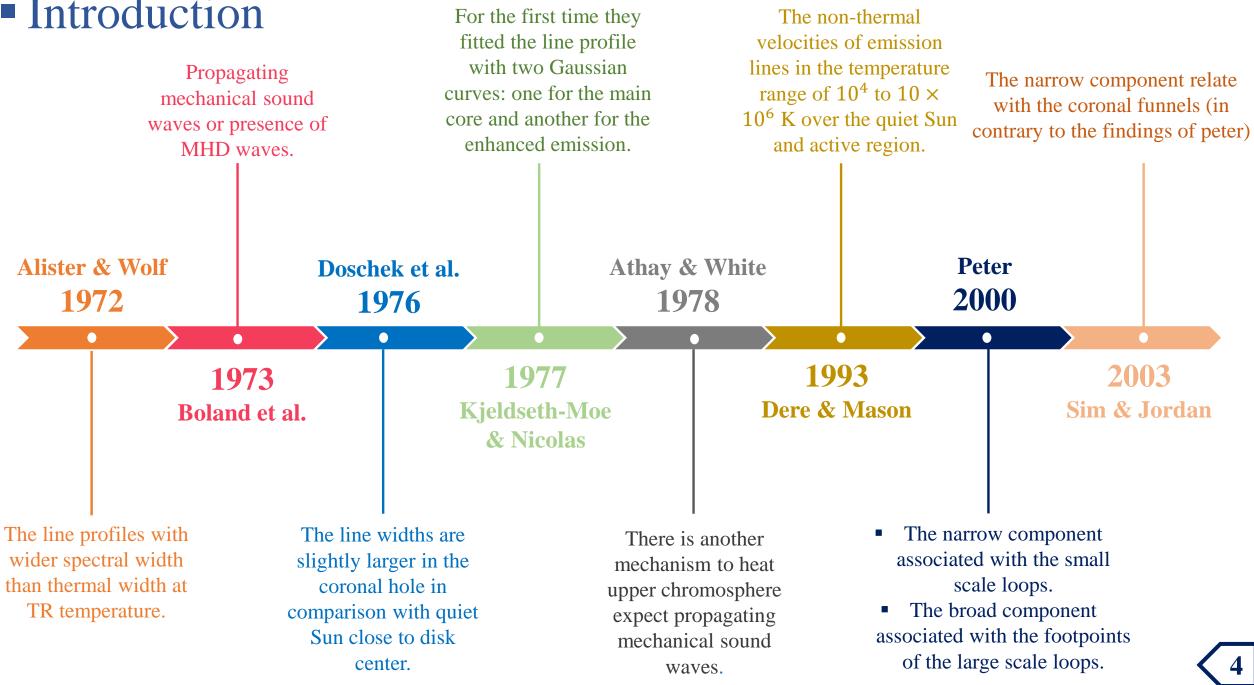
Introduction

Chromosphere and Transition region

The chromosphere and transition region are the two main layers of the solar atmosphere that are the least known due to their complicated structures.

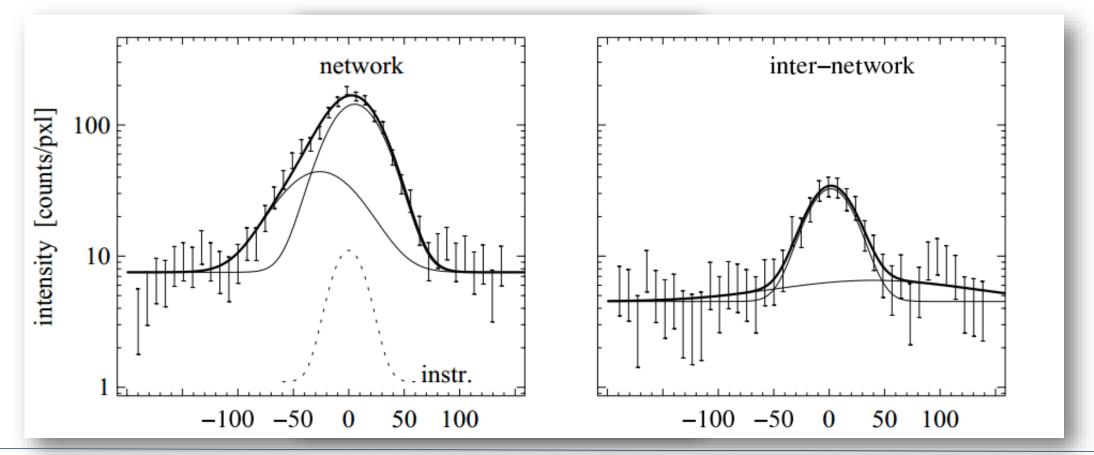
Introduction

Chromosphere and Transition region


Studying the emission line profiles in solar UV spectra which originate from chromosphere and TR provide:

✓ The energy and mass flux transport mechanisms from the photosphere to corona

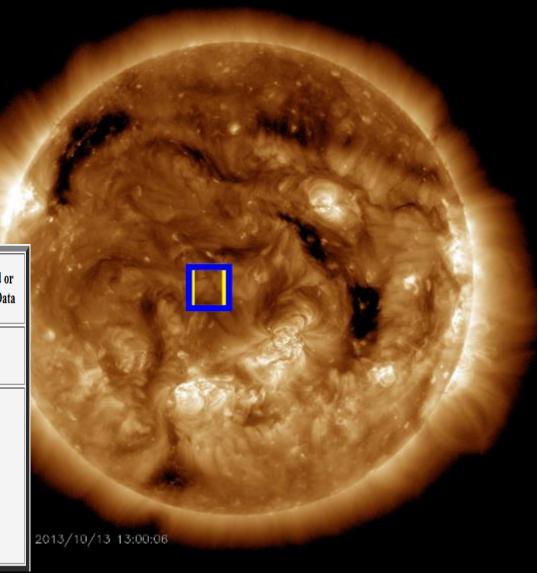
✓ The responsible heating mechanism in solar chromosphere

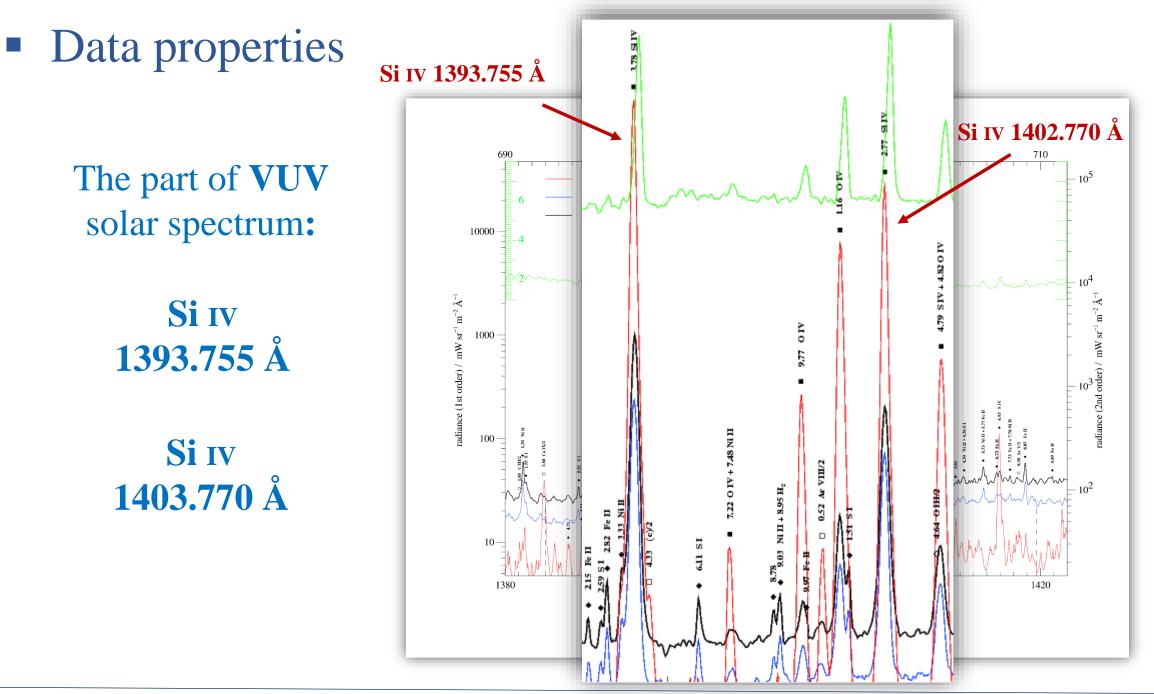


Introduction

Chromospheric network and internetwork

The chromospheric network areas has stronger magnetic field than internetwork regions. The EUV spectrum of the network regions is observed to have broader line consist of two Gaussian component: A main component (core) and a blended one (Peter, H., 2000).




Peter, H., 2000, A&A, 360, 761-776

Data properties

Spatial resolution : (0.35,0.16) arcsec in the solar X & solar Y directions Spectral resolution : 12.5 mÅ/pix Step cadence : 32 s Data's level : level 2

Overview	Where	Raster	SJI wavel: cadence, # images	Data Links	Coordinated or Co-aligned Data
2013-10-13 23:27:28-02:59:15 +1d	Quiet Sun Hinode OBS 3820013446: ¹	Observation Very large dense raster		<u>Annotate</u>	
	x,y: -120",-41" Max 307"x174" FOV: Target: QS <u>Nearby Events</u>	FOV: 141"x174" Steps: 400x0.35" Step Cad: 31.8s Raster 12,706s, 1 Cad: ras Linelist: <u>v38_01</u>	FOV: 167"x174" 1400: 62s, 153 imgs 2796: 62s, 153 imgs	Raster 904 MB 1400 244 MB 2796 244 MB AllMovies 1372 MB	<u>AIA</u> 2190 MB

http://soi.stanford.edu

• Fitting a one or two Gaussian curves:

$$y = A \exp \frac{-(\lambda - \lambda_0)^2}{\sigma^2} + Bx + C$$
$$y = A \exp \frac{-(\lambda - \lambda_0)^2}{\sigma^2} + A' \exp \frac{-(\lambda - \lambda'_0)^2}{\sigma^2} + Bx + C$$

• Doppler shift:

$$v_{LOS} = c \; \frac{\lambda - \lambda_0}{\lambda_0} \qquad (\text{km/s})$$

• Line width:

$$\Delta \lambda_{th} = \left(\frac{2 \ k_B \ T}{m}\right)^2 \qquad (\text{km/s})$$
$$\Delta \lambda_{inst.} = \Delta \lambda_{inst.} (\text{Å}) \frac{c}{\lambda_0} \qquad (\text{km/s})$$
$$\Delta \lambda_{nth} = \left(\Delta \lambda_{obs}^2 - \Delta \lambda^2_{th} - \Delta \lambda^2_{inst.}\right)^{1/2} \qquad (\text{km/s})$$

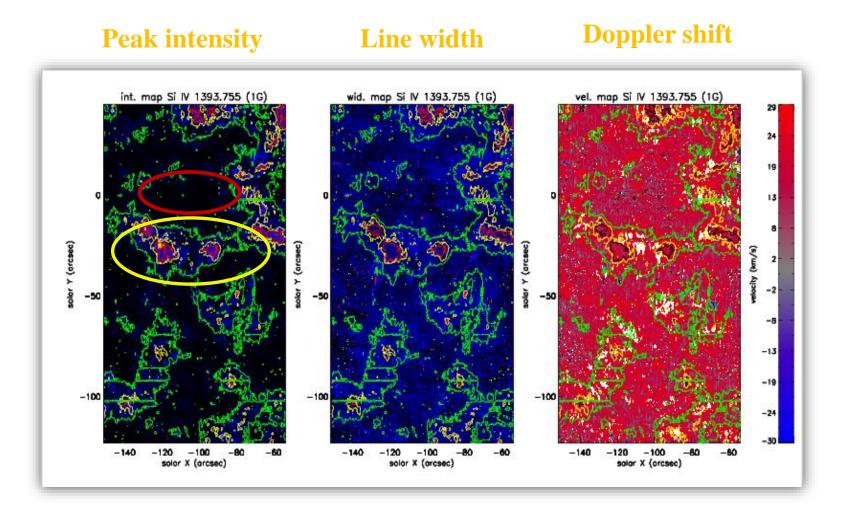
8

• Energy flux of sound wave :

$$F_{\text{sound}} = \frac{3}{2} \rho \xi^2 v_{\text{sound}}$$
(erg arcsec⁻² s⁻¹)

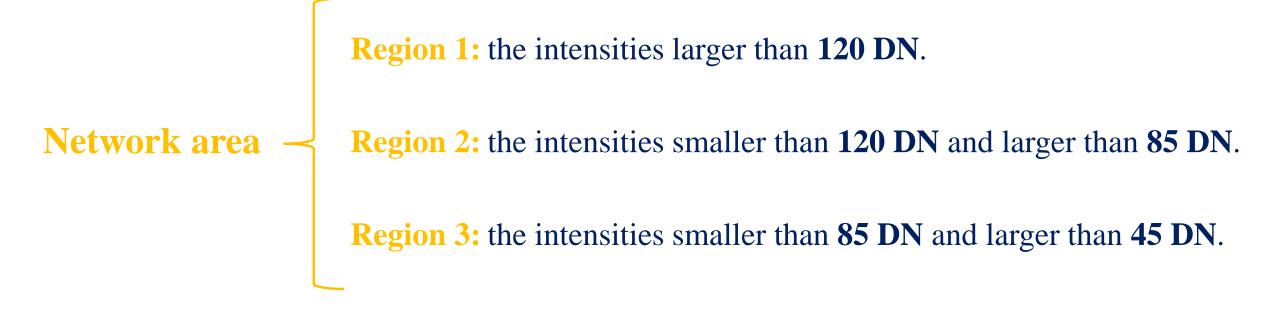
• Energy flux of Alfven wave :

$$F_{Alfven} = \frac{3}{2} B \left(\sqrt{\frac{\rho}{4\pi}} \right) \xi^2$$
(erg arcsec⁻² s⁻¹)


• Energy flux of turbulence:

$$F_{turb.} = 1.84 \rho \xi^3$$

(erg arcsec⁻² s⁻¹)


9

H., Peter, 2000 & Wood B.E., Linsky J.L., Ayres T.R., 1997

The left, middle and right panels of this figure show the peak intensity, width and Doppler shift maps of the studied region for Si IV 1393.755 Å chromospheric emission line.

Internetwork : the intensities smaller than **45 DN**.

Calculating Doppler shift & Line width (Si IV 1394 Å)

 \checkmark The core components show average redshifts and the blended components show average blueshifts.

 \checkmark The network region show a larger width respect to internetwork areas.

	Doppler shift (km/s)			Line width (km/s)		
	2G_2 fit (Core)	2G_1 fit (Blend)	1G	2G_2 fit (Core)	2G_1 fit (Blend)	1 G
Region 1	23.9 ± 1.8	-6.9 ± 1.1	11.1 ± 0.3	16.1 ± 1.2	12.9 ± 2.3	16.8 ± 0.2
Region 2	24.2 ± 0.4	-6.8 ± 0.9	11.0 ± 0.4	15.6 ± 1.2	12.9 ± 0.7	17.2 ± 0.4
Region 3	23.1 ± 1.7	-6.1 ± 1.3	$10.8\pm\!0.7$	14.8± 1.1	12.3 ± 0.9	16.5 ± 0.7
Network	23.3 ± 0.6	-6.2 ± 1.3	10.8 ± 0.6	14.9 ± 1.1	12.4 ± 1.9	16.6 ± 0.6
Internetwork	23.1 ± 0.4	-5.8 ± 1.3	10.2 ± 0.8	12.2 ± 1.3	10.2 ± 1.7	14.0± 1.1
All areas	22.8±1.7	-5.9 ± 1.8	10.4 ± 1.4	13.2 ± 2.1	11.0 ± 2.4	14.9 ± 1.3

Calculating Doppler shift & Line width (Si IV 1403 Å)

 \checkmark The core components show average redshifts and the blended components show average blueshifts.

 \checkmark The network region show a larger width respect to internetwork areas.

	Doppler shift (km/s)			Line width (km/s)		
	2G_2 fit (Core)	2G_1 fit (Blend)	1G	2G_2 fit (Core)	2G_1 fit (Blend)	1 G
Region 1	$\textbf{24.8} \pm \textbf{1.2}$	-6.4 ± 2.3	12.6 ± 1.4	16.8 ± 1.3	9.9 ± 0.3	16.6 ± 1.2
Region 2	24.6 ± 1.5	-5.7 ± 1.6	14.0 ± 1.8	15.9 ± 0.9	10.8 ± 0.3	17.1 ± 1.5
Region 3	26.0 ± 1.6	-7.0 ± 1.7	9.7±0.8	15.0 ± 0.9	$\textbf{10.8} \pm \textbf{1.0}$	16.6 ± 1.2
Network	25.8 ± 1.6	-6.8 ± 1.3	10.4 ± 0.9	15.2 ± 0.8	$\textbf{10.8} \pm \textbf{1.7}$	16.7 ± 1.1
Internetwork	25.7 ± 2.1	-7.0 ± 1.0	9.1 ± 0.6	11.5 ± 1.4	9.9 ± 0.1	14.2 ± 0.8
All areas	26.3 ± 2.4	-7.4 ± 1.4	7.9 ± 1.9	12.8 ± 2.1	10.2 ± 3.3	15.1 ± 1.9

Calculating correlation coefficients (Si IV 1394 Å)

	Corr. Coeff (Dop.shift & int.)			Corr. Coeff (Line width & int.)		
	2G_2 fit (Core)	2G_1 fit (Blend)	1G	2G_2 fi (Core)		1G
Region 1	-0.19	0.04	0.02	0.38	0.09	0.44
Region 2	-0.11	-0.05	-0.05	0.32	0.30	0.54
Region 3	-0.12	-0.02	-0.09	0.28	0.29	0.46
Network	-0.12	-0.01	-0.08	0.28	0.23	0.40
Internetwork	-0.13	0.08	0.11	0.15	0.10	0.12
All areas	-0.08	0.04	0.07	0.22	0.24	0.33

Calculating correlation coefficients (Si IV 1403 Å)

	Corr. Coeff (Dop.shift & int.)			Corr. Coeff (Line width & int.)		
	2G_2 fit (Core)	2G_1 fit (Blend)	1G	2G_2 fit (Core)	2G_1 fit (Blend)	1 G
Region 1	-0.04	0.27	0.09	0.25	0.28	0.35
Region 2	-0.08	0.10	-0.03	0.31	0.41	0.44
Region 3	-0.09	0.11	-0.07	0.33	0.31	0.39
Network	-0.10	0.11	-0.06	0.27	0.30	0.32
internetwork	0.004	0.04	0.09	0.17	0.18	0.13
All areas	-0.01	0.07	0.07	0.29	0.28	0.27

Results Calculating energy flux (Si IV 1394 Å)

	ξ	Energy Flux (erg cm ^{-2} s ^{-1})				
	(km/s)	F _{Alfven}	F sound	F _{turb.}		
Region 1	14.03	$5.68 imes 10^4$	5.09	2.37		
Region 2	14.50	$6.07 imes 10^4$	5.44	2.61		
Region 3	13.74	$5.45 imes 10^4$	4.88	2.22		
Network	13.84	$5.53 imes 10^4$	4.95	2.27		
Internetwork	10.56	$3.22 imes 10^3$	2.88	1.00		
All areas	11.13	$3.58 imes 10^4$	3.20	1.18		

Results Calculating energy flux (Si IV 1403 Å)

	ξ	Energy Flux (erg cm ^{-2} s ^{-1})				
	(km/s)	(Km/S) F _{Alfven} F _{sound}		F _{turb.}		
Region 1	13.84	$5.53 imes 10^4$	4.95	2.27		
Region 2	14.45	6 . 03 × 10 ⁴	5.40	2.59		
Region 3	13.87	$5.56 imes 10^4$	4.97	2.29		
Network	13.93	$5.60 imes 10^4$	5.02	2.32		
Internetwork	10.90	3 . 43 × 10 ³	3.07	1.11		
All areas	12.01	$4.17 imes 10^4$	3.73	1.48		

Conclusions

 \checkmark The core components show redshift where as the blended components show blueshift.

✓ There is no correlation between the intensities and the Doppler shifts however there is some correlation between the intensities and non-thermal velocities:

- This might be due to the presence non-thermal horizontal (or inclined) flows in the network regions.
- It is suggested that the horizontal (or inclined) flows can be created by the loops with different scales in the network regions.

✓ The results suggest that the dominant thermal mechanism in the chromospheric network might be via propagation of Alfven waves.

Thank you for your attention