

- site of opposite polarities
- EBs in Ha wing
- bright in Si IV, Ca
 II triplet wing, Mg II
 (k2), and AIA 1700
- (usually) dark in Ha and Ca II cores (as well as Mg II core)
- also dark in He II 304, Fe IX 171 and Fe XII 193
- surge (of cold material) visible in many channels

Observations: September 2016 coordinated SST - IRIS campaign

- CRISP @ I-m SST: 2-6 September 2016, AR 12585: flux emergence
- Scans of **6563** Å and **Ca II 8542** Å:
 - Hα: 15 wavelengths
 - Ca II 8542: 21 wavelengths w/spectropolarimetry
 - cadence: 20.2 s
 - sampling: 200 m Å for Halpha and 70 m Å for Ca IR
 - · diffraction limited observations at high resolution: **0.14**" at 6300 Å
- IRIS: 2-6 September 2016, AR 12585: medium dense 16-step raster
- Slit jaw images: C II 1330 (TR), Si IV 1400 (TR), Mg II h/k 2796 (upper chrom.)
- FOV: 60" x 60" (SJI) & 5"x 60" (raster)
- · cadence: I0 s (SJI) & 21 s (raster)
- Rasters in 3 spectral windows:
 - FUV 1: 1331.6 1358.4 Å (C II)
 - FUV 2: 1380.6 1406.6 Å (Si IV)
 - NUV: 2782.6 2833.9 Å (Mg II K & h)

3rd, 4th, 5th and 6th September 2016

FOV for 6th September 2016

R

8 cases of reconnection:

- 4 EB + UV burst
- I only EB
- 3 only UV burst

Flux emergence region: in all FOV

IRIS slit positions

3rd September 2016: roughly 2 hours from 7:58 UT

Small spatial displacement between EB and UV burst

EB boundary

UV burst boundary

3rd September 2016

Small spatial displacement between EB and UV burst

3rd September 2016

- 2 brightenings during observing sequence
- Hα wing and Ca wing have very similar behaviour
- Ha core and Ca core show some brightenings that Clearcide with the hippen and and betweege EBOand and but burst as they happen almost simultaneously, UV burst has a very steep increase
- UV lits up slightly later than the EB:
 - almost simultaneously in 1st brightening
 - 2 min later in 2nd brightening

6th September 2016

Hα surge starts at 08:06:02
 UT, lasting until the end of
 the observing sequence.
 Totally hides the EB for ~ I
 min.

Unclear relationship between EB and UV burst: • Again UV burst shows steep spatial coincidence but teshperal most flat temporal variation.

 UV burst lags 6-7 min after the EB appearance

6th September 2016

Orcsec

Vel [km/s]

-40-30-20-10 0 10 20 30 40 50 60

Mg triplet appea the lower chromos heated: coincides v **brightness** of U\

Absorption in b Si IV 1394 Å show: presence of cold I along the LOS of t burst

arcsec

arcsec

- A region of smaller extent shows high electron densities of $n_{\rm e} \simeq 10^{13}~{\rm cm}^{-3}$ which is order of magnitude more than ambient
- Filling same extent inverted temperature of $T_{\rm e}=7\,000~{\rm K}$ at $\log(\tau)\approx-3,2000~{\rm K}$ hotter than ambient, and remaining constant up to $\log(\tau)\simeq-6$
- Velocities up-flowing -10 -20 km/s.
- Upper chromosphere velocities down-flowing 10 km/s.

Flux emergence, from the photosphere to the corona...

Discussion

- 3/9/16: 48% EB-only, 43% UV-burst only, 9% EB+UV
- 6/9/16: 48% EB-only, 36% UV-burst only, 16% EB+UV
- Possible to produce Ha wing EB emission if photosphere or TR > 20,000-80,000 K?
- Almost all EBs have accompanying cold surges
- Velocities in Si IV (line width) is very high ~200 km/s
- Temperature in UV bursts could be much higher than 80000 K.
- UV bursts formed several scale heights above Hα as part of same structure (nearly vertical current sheet)

Ha line wing, during height of UV burst

Ha line core, during height of UV burst

6th September 2016: 20 minutes from 7:59 UT

Total spatial coincidence between EB and UV burst

EB boundary

UV burst boundary

6th September 2016

Total spatial coincidence between EB and UV burst

Flux emergence simulation based on public Bifrost model: EBs?, UV Bursts?, etc(?)

The solution: a 3000 km reconnection wall

Reconnection happens along a wall of about 3000 km tall, where EBs and UV bursts occur co-spatially but at different layers with around 1500 km difference

How about Ha?

Several EB's visible co-located with UV-bursts

Here synthetic profiles calculated with MULTI3D, courtesy of Johan Pires Bjørgen, Stockholm University and now RoCS

EB not visible in line core at μ =0.5

Sites of strong flux emergence, formation of coronal active region magnetic field

Schmieder & Pariat 2007 Scholarpedia 2(12):4335 (Shibata's cartoon, slightly modified)

Discussion/Summary

- Flux emergence carries high density cold material high into chromosphere.
- "Ellerman bombs" reproduced through reconnection at photospheric level.
- Temperature rise of some 2 5000 K above photosphere.
- Large velocity (20 km/s in photosphere) jet.
- Hα emission looks right, Si IV emission from above photospheric EB can occur.
- "Hierarchical" reconnection/jets as field expands into corona forming long fibrils/coronal loops UV bursts (and Hα microflares?) arise at chromospheric heights ("level 2")?
- Densities high enough even at 800 2000 km to reproduce measured
 Si IV intensities. Cool Ni II absorption from high lying cool gas seen.
- "Level 2" jet velocities of order 200 km/s or higher.