

Flame-like Ellerman Bombs and their Connection to UV Bursts

Yajie Chen^{1,2}, Hui Tian¹, Hardi Peter², Tanmoy Samanta¹, Vasyl Yurchyshyn³, Haimin Wang^{3,4}, Wenda Cao³

- 1. School of Earth and Space Sciences, Peking University
- 2. Max Planck Institute for Solar System Research
- Big Bear Solar Observatory, New Jersey Institute of Technology
- 4. Center for Solar-Terrestrial Research, New Jersey Institute of Technology

UV bursts (IRIS bombs)

Small-scale compact transient brightenings in TR (~10⁵ K) images

Peter, Tian, Curdt, Schmit, Innes, et al. 2014, Science

UV bursts (IRIS bombs)

Sountrate

Small-scale
compact transient
brightenings in TR
(~10⁵ K) images

Peter, Tian, Curdt, Schmit, Innes, et al. 2014, Science

 Chromospheric absorption lines superimposed on the greatly broadened and enhanced TR line profiles: heating of lower atmosphere to ~10⁵ K

UV bursts produced by reconnection

Transition region (10⁵ K) Magnetogram (B_{los})

- Most UV bursts appear to result from interactions between magnetic fields with different polarities.
- Flux cancellation with a rate of ~10¹⁵ Mx/s can be clearly identified for many bursts, suggesting the occurrence of reconnection (e.g., Wang & Shi, 1993; Priest et al. 1994)

Tian, Zhu, Peter, et al. 2018, ApJ

UV bursts produced by reconnection

Transition region (10⁵ K) Magnetogram (B_{los})

- Most UV bursts appear to result from interactions between magnetic fields with different polarities.
- Flux cancellation with a rate of ~10¹⁵ Mx/s can be clearly identified for many bursts, suggesting the occurrence of reconnection (e.g., Wang & Shi, 1993; Priest et al. 1994)

Tian, Zhu, Peter, et al. 2018, ApJ

UV bursts produced by reconnection

Transition region (10⁵ K) Magnetogram (B_{los})

- Most UV bursts appear to result from interactions between magnetic fields with different polarities.
- Flux cancellation with a rate of ~10¹⁵ Mx/s can be clearly identified for many bursts, suggesting the occurrence of reconnection (e.g., Wang & Shi, 1993; Priest et al. 1994)

Tian, Zhu, Peter, et al. 2018, ApJ

Ellerman bombs (EB)

Watanabe et al. 2011, ApJ

- Characterized by intense shortlived brightenings in the extended wings of Hα 6563 Å.
- Signatures of heating by reconnection around temperature minimum region (TMR).
- T<104 K

Ellerman bombs (EB)

Watanabe et al. 2011, ApJ

- Characterized by intense shortlived brightenings in the extended wings of Hα 6563 Å.
- Signatures of heating by reconnection around temperature minimum region (TMR).
- T<104 K

Connection to Ellerman bombs

UV bursts (~10⁵ K)

Ellerman bombs (<10⁴ K)

20% of EBs show signatures of UV bursts (~10⁵ K)

Also see Vissers et al. 2015, Kim et al. 2015

Connection to Ellerman bombs

UV bursts (~10⁵ K)

Ellerman bombs (<10⁴ K)

20% of EBs show signatures of UV bursts (~10⁵ K)

Also see Vissers et al. 2015, Kim et al. 2015

Connection to Ellerman bombs

UV bursts (~10⁵ K)

Ellerman bombs (<10⁴ K)

20% of EBs show signatures of UV bursts (~10⁵ K)

Also see Vissers et al. 2015, Kim et al. 2015

Can the temperature minimum region (TMR) be heated to 10⁵ K?

 1D RHD simulations: If the EB maximum temperature reaches more than 10 000 K around the TMR, then the resulting Hα and Ca II 8542 Å line profiles and the continuum emission would be much stronger than those of EB observations (e.g. Fang et al. 2017, Hong et al. 2017)

Can the temperature minimum region (TMR) be heated to 105 K?

- 1D RHD simulations: If the EB maximum temperature reaches more than 10 000 K around the TMR, then the resulting Hα and Ca II 8542 Å line profiles and the continuum emission would be much stronger than those of EB observations (e.g. Fang et al. 2017, Hong et al. 2017)
- 2.5D MHD simulations: If B>1000 G and β<0.0145, the initially weakly ionized plasmas can become fully ionized within the reconnection region and the current sheet can be strongly heated to above 25 000 K (Ni et al. 2016, 2018).

Can the temperature minimum region (TMR) be heated to 105 K?

 3D RMHD simulations: EBs and UV bursts are successfully produced. EBs and UV bursts are occasionally formed at opposite ends of a long current sheet that resides in an extended bubble of cool gas. (Hansteen et al. 2019).

Date: 2015-06-25

IRIS: SJI 1400, 1330, 2796, 2832 Å

GST: H α core, ± 1 , ± 0.6 Å

Date: 2017-05-27

IRIS: SJI 1330, 2796, 2832 Å

GST: $H\alpha$ core, ± 1 , ± 0.8 , ± 0.6 , ± 0.4 , ± 0.2 Å

Chen, Tian, Peter et al. 2019, ApJL

Chen, Tian, Peter et al. 2019, ApJL

- UV bursts have a tendency to appear at the upper parts of flame-like EBs.
- Intensities of most EBrelated UV bursts and their corresponding EBs reveal correlated variations.

A possible scenario

UV bursts and their associated EBs are likely formed at different heights during a common reconnection process.

Summary

- Magnetic field and spectroscopic observations have demonstrated that UV bursts result from reconnection in the lower chromosphere or photosphere.
- Recent 3D RMHD simulations suggest that EBs and UV bursts are occasionally formed at opposite ends of a long current sheet.
- Limb observations imply that UV bursts and EBs may be formed at different heights during the same reconnection processes.