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Monograph Year Pages Citations

An Introduction to the Study of
Stellar Structure 1939 508 1024

Principles of Stellar Dynamics 1943 313 701
Radiative Transfer 1950 393 1766
Hydrodynamic and

Hydromagnetic Stability 1961 652 2465
Ellipsoidal Figures of Equilibrium 1969 252 862
The Mathematical Theory of

Black Holes 1983 646 1121





Hydrodynamic and Hydromagnetic Stability

1. Basic concepts

2–6. The thermal instability of a layer of fluid heated from
below

7–9. The stability of Couette flow

10. The stability of superposed fluids: The Rayleigh–Taylor
instability

11. The stability of superposed fluids: The Kelvin–Helmholtz
instability

12. The stability of jets and cylinders

13. Gravitational equilibrium and gravitational instability

14. A general variational principle



The Benard Problem



• Boussinesq approximation: Fluid is treated as incompress-
ible and variations in density are ignored except in the
gravitational force (buoyancy) term, which is written as

δρg = −αρ0δTg,

where α is the coefficient of volume expansion and

ρ = ρ0 [1− α(T − T0)]

.

• This approximation filters out the acoustic modes of os-
cillation and is applicable for laboratory experiments with
liquids.



• With these approximations the linearised perturbation equa-
tions have constant coefficients and the normal modes
have solution of the form

exp(i(kxx+ kyy) + pt), k =
√
k2

x + k2
y.

• Equations are written in dimensionless form using d the
height of fluid layer as the dimension of length and d2/ν
as dimension of time.



• The equation depends on some dimensionless constants,
i.e., the Rayleigh number:

R =
gαβd4

κν

the Prandtl number P = ν/κ, and the wavenumber
a = kd and σ = pd2/ν.

• The equations along with appropriate boundary condi-
tions can be solved to obtain the dispersion relation for
σ(R,P, a). Here, the wavenumber a defines the length
scale of perturbations and for stability the Real(σ) < 0
for all values of a.

• Chandrasekhar has done detailed analysis of the equation
for different boundary conditions to analyse stability.



• Since σ is a continuous function of its argument, the tran-
sition to instability occurs when Real(σ) = 0, which yields
two possibilities, σ = 0 or σ is purely imaginary.

• When σ is real the state of marginal stability is given by
σ = 0 and when that happens it is referred to as principle
of the exchange of stability. Chandra has shown that for
the non-rotating case this is the route to instability.

• In this case the equation doesn’t depend on P and yields
R(a). Minimising this function w.r.t. a gives the critical
Rayleigh number, Rc.

• For instability R has to be greater than this critical value,
while the value of a which gives minimum R gives the
length scale of modes that would be excited when R just
exceeds the critical value.



• Although the linear stability analysis doesn’t give any in-
formation about the shape of convective cellular pattern,
Chandra has analysed various possibilities and compared
them with experimentally observed patterns.

• The second possibility of purely imaginary σ leads to the
possibility of transition to instability through oscillatory
modes, which is referred to as overstability. This possi-
bility can arise in the presence of rotation or magnetic
field.



• Rotation introduces additional forces and the simplest
case arises when the rotation axis is parallel to gravita-
tional force. In presence of rotation the equations involve
another dimensionless constant, the Taylor number

T =
4Ω2d4

ν2

• In this case if the onset of instability is through stationary
convection (σ = 0), then the critical Rayleigh number is
a function of T and its value is found to increase with T .



• However, there is another possibility that the onset of
instability arises through overstability, or oscillatory insta-
bility. This is possible when P < 1. Minimum value of
R for instability depends on P, T . In case this minimum
is less than that for instability through stationary convec-
tion, then the transition occurs through overstability.





• Similar results were obtained with magnetic field

• This work has been extended to nonlinear case where the
Rayleigh no. is marginally above the critical value. This
can give information about the pattern of convective cells.

• Another extension is to compressible fluid, which is more
relevant for stellar convection. In this case the eigenvalue
problem has to be solved numerically.

• With enhanced computing power it is now possible to do
fully nonlinear calculations for fluid in a box. Although,
these calculations cannot yet account for all scales of tur-
bulence in stellar convection zone.



Solar Granulation

Swedish Solar Telescope
on La Palma by Carls-
son et al.

Numerical Simulation

CO5BOLD by Matthias
Steffen and Bernd Frey-
tag



Some papers citing HHS

• Pattern formation outside of equilibrium

M. C. Cross and P. C. Hohenberg

RvMP (1993) 65, 851

• Pattern formation in Benard convection (R > Rc) and
Couette flow

• Theory of extragalactic radio sources

M. C. Begelman, R. D. Blandford, M. J. Rees

RvMP (1984) 56, 255

• Formation of jets and Kelvin-Helmholtz instability



• Instabilities and pattern formation in crystal growth

J. S. Langer (1980) RvMP 52, 1

• Stability analysis and state of marginal stability

• The dynamical state of the interstellar gas and field

E. N. Parker (1966) ApJ 145, 811

• Rayleigh-Taylor instability in presence of magnetic field



• Gas dynamics of semidetached binaries

S. H. Lubow and F. H. Shu (1975) ApJ 198, 383

• Kelvin-Helmholtz instability

• Stellar turbulent convection — A new model and appli-
cation

V. M. Canuto and I. Mazzitelli (1991) ApJ 370, 295

• Calculation of convective flux in stellar convection zone



Solar model — Observed frequencies

Canuto-Mazzitelli Mixing Length Theory



NONRADIAL OSCILLATIONS OF STARS

• The equations for nonradial stellar oscillations with sim-
ple boundary conditions were shown to form a Hermitian
eigenvalue problem and hence follow a variational formu-
lation:

σ2

∫
V

ρ|ξξξ|2 dx =
∫

V

[
γp(∇ · ξξξ)2 +

2
r

dp

dr
(x · ξξξ)∇ · ξξξ

]
dx

+
∫

V

(x · ξξξ)2

r2ρ

dρ

dr

dp

dr
dx

−G

∫
V

∫
V

(∇ · ρξξξ)x(∇ · ρξξξ)x′

|x− x′|
dx dx′



• These equations were used to obtain the normal modes
of oscillations in terms of vector spherical harmonics:

ξr =
ψ(r)
r2

Y m
` (θ, φ)

ξθ =
1

`(`+ 1)r
dχ(r)
dr

∂Y m
` (θ, φ)
∂θ

ξφ =
1

`(`+ 1)r sin θ
dχ(r)
dr

∂Y m
` (θ, φ)
∂φ

• The formulation for radial oscillations (χ(r) = 0, ` = 0)
was also obtained.



• Chandra also obtained the so-called Kelvin mode, or the
f-mode using ψ = χ = r`+1 to get

σ2 =
2`(`− 1)
2`+ 1

G

∫ R

0
ρr2`−3M(r) dr∫ R

0
ρr2` dr

≈ `
GM

R3
= gk (`→∞)

• The frequencies of f-modes have been used to estimate
solar radius.



• On formation of close binaries by two-body tidal capture

W. H. Press, S. A. Teukolsky (1977) ApJ 213, 183

• They used mechanism of Fabian, Pringle and Rees (1975)
where two stars in hyperbolic orbit have a close encounter,
which leads to a elliptic orbit when sufficient energy is
transferred to nonradial oscillations in these stars. This
mechanism was proposed for formation of X-ray binaries
in globular clusters.

• They formulated the problem as a forced oscillator with
tidal forces forming the forcing term:(

L − ρω2
)
ξξξ = ρ∇U



• By expanding the tidal forcing in terms of eigenfunctions,
they obtained the amplitude of normal modes that are
excited.



• Rapidly rotating neutron star models

• J. L. Friedman, J. R. Ipser, L. Parker

ApJ (1986) 304, 115

• They investigated the structure of rapidly rotating rela-
tivistic models for various nuclear matter EOS. They ob-
tained upper limit on rotation rate for different models.



• On the stability of differentially rotating bodies

• D. Lynden-Bell and J. P. Ostriker

MNRAS (1967) 136, 293

• They generalised the variational principle to a differen-
tially rotating self-gravitating body. Clement (1964, ApJ
140, 1045) had generalised the variational principle to uni-
formly rotating star. This could be used to study stability
of differentially rotating stars.



Application to stellar oscillations

• Variational formulation has been used to study the effect
of small perturbations to basic spherically symmetric stel-
lar model. The perturbations could be due to other forces,
e.g., rotation or magnetic field or due to perturbation in
the stellar models or due to truncation error in numerical
calculation of frequencies.

• We can write the perturbed operator as L+ δL giving

(L+ δL)ξξξ = ρ(ω2 + δω2)ξξξ

and in a degenerate perturbation theory we get

δω2
λ =

〈ξλξλξλ∗δLξλξλξλ〉
〈ξλξλξλ∗ρξλξλξλ〉



• Since solar oscillation frequencies have been measured to
very high accuracy, the solar model frequencies also need
to be calculated to even better accuracy for proper com-
parison.

• The second order finite difference representation that is
normally used to solve the eigenvalue problem does not
give the required accuracy unless the number of mesh
points is larger than 10000.

• The truncation error in this difference approximation is
treated as perturbation and the correction to the fre-
quency calculated using the variational principle.



• If we consider perturbation in a stellar model, the change
can be expressed in terms of perturbation in the sound
speed and density, giving

δνn`

νn`
=

∫ R

0

Kn`
c2,ρ(r)

δc2

c2
(r)dr +

∫ R

0

Kn`
ρ,c2(r)

δρ

ρ
(r)dr

• It can be shown that c, ρ along with hydrostatic equilib-
rium are enough to determine the solar model as far as
frequencies are concerned. Pressure p and adiabatic index
Γ1 can be determined from c, ρ.

• This equation is used for inversion to calculate c, ρ in the
Sun.



Sun – Model (Brun et al. 2002)



Basu & Antia (2008)



• Ritzwoller & Lavely (1991, ApJ 369, 557) treated rotation
as a perturbation on spherically symmetric stellar model
to calculate the first order effect of rotation, arising from
the Coriolis force

δL = −2iωρvrot · ∇ξξξ
to calculate the frequency splitting due to rotation.

• The frequency splitting can be expressed as

νn,`,m = νn,` +
M∑

j=1

a
(n,`)
j Pj(m)

and the rotation velocity is decomposed as

vφ(r, θ) = −
M∑

j=1

w2j−1(r)
∂Y 0

2j−1

∂φ



• With these decomposition, using the variational principle
the splitting coefficients are given by

a
(n,`)
j =

∫ R

0

wj(r)K(n,`)
j (r)r2 dr

=
∫ R

0

∫ 1

=1

Ω(r, θ)K(n,`)
j (r, θ) dr d cos θ

This equation can be used for inversion of rotation rate
from observed splitting coefficients.

• The splitting coefficients are sensitive only to the North–
South symmetric component of rotation rate and hence
that is the only component that can be determined.







• Shear layer at the surface

• Tachocline

• Global quantities: (Pijpers 1998)

Angular Momentum: H = (190.0± 1.5)× 1046 gm cm2 s−1 ,

Kinetic Energy: T = (253.4± 7.2)× 1040 gm cm2 s−2 ,

Quadrupole Moment: J2 = (2.18± 0.06)× 10−7 .

J2 will cause precession of perihelion of Mercury by 0.03′′

per century.



• Gough & Thompson (1990, MNRAS 242, 25) extended
the study to include second order effect of rotation and
magnetic field

(L − ρω2)ξξξ = ωMξξξ +N ξξξ + Bξξξ

• The second order effects contribute to the even order
splitting coefficients and can be separated from rotation.
They also calculated the effect of departure from spherical
symmetry due to rotation.



• The magnetic field was considered to be axisymmetric,
either toroidal

B =
[
0, 0, a(r)

d
dθ
Pk(cos θ)

]
or poloidal

B =
[
k(k + 1)

b(r)
r2

Pk(cos θ),
1
r

db
dr

d
dθ
Pk(cos θ), 0

]

• Using a toroidal field with

a(r) =
{√

8πp0β0(1− ( r−r0
d )2) if |r − r0| ≤ d

0 otherwise



• For k = 2, β0 = 10−4, r0 = 0.713R�, d = 0.02R�, the
splitting coefficients are

Turning point rt is given by
`(`+ 1)c2(rt)

r2t
= ω2

Antia et al. (2000)



Baldner et al. (2009)



Baldner et al. (2009)



Baldner et al. (2009)



• Contribution to frequency shift from meridional flow, or
the North–South antisymmetric component of rotaton
vanishes in this limit and one has to use the quasi-degenerate
perturbation theory (Lavely & Ritzwoller 1992).

• In this case the eigenfunction is written as the sum of
eigenfunctions of spherically symmetric model with close
frequencies

ξ′kξ
′
kξ
′
k =

∑
k′

ak′ξk′ξk′ξk′

and the equations are given by

(L − ρω′k
2)ξ′kξ

′
kξ
′
k + δLξ′kξ′kξ′k = 0

which gives a set of equations:∑
k′

ak′
[
Hjk′ + δjk′(ω2

k′ − ω2
k)

]
= aj(ω′k

2 − ω2
k)



where Hjk = 〈ξjξjξj∗δLξkξkξk〉.

• The axisymmetric meridional velocity is of the form

vs(r, θ) =
[
us(r)Ps(cos θ), vs(r)

d
dθ
Ps(cos θ), 0

]

vs(r) =
1
ρr

d
dr

(
ρr2us(r)
s(s+ 1)

)

us(r) =
{
u0

4(R−r)(r−rb)
(R−rb)2

if rb ≤ r ≤ R

0 otherwise



Chatterjee & Antia (2009)


