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PLAN OF THE TALK

• FINITE SELF-GRAVITATING SYSTEMS OF PARTICLES

– General features

– Mean field description: Isothermal sphere

– Antonov instability

• RELAXATION TIME AND DYNAMICAL FRICTION

– Chandra’s contribution

– Historical background

• GRAVITATING PARTICLES IN EXPANDING BACKGROUND

– General features, Open questions

– Power transfer, Inverse cascade

– Universality
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Γ ∼ V NE3N/2 ∼ g(E); T (E) = (2E/3N); P/T = N/V

• Canonical description:

Z(T ) =

∫

dpdq exp[−βH(p, q)] =

∫

dEg(E) exp[−βE] = e−βF

with

Ē = −(∂ lnZ/∂β); P̄ = T (∂ lnZ/∂V )

• If energy is extensive, these descriptions are equivalent for most systems to

O(lnN/N).
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• Long range interaction with no shielding. Energy is not

extensive.

• Microcanonical and Canonical descriptions are not

equivalent.

• The g(E) and S(E) requires short-distance cutoff for

finiteness.
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cutoff; dominated entirely by gravity and has negative specific heat. 2K + U ≈ 0.
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and canonical ensembles differ drastically in this range. Canonical ensemble leads

to a phase transition.

• As we go to E ≃ E1, the hard core nature of the particles begins to be felt and

the gravity is again resisted; low temperature phase with positive specific heat.

U ≈ U0.

• Increasing R increases the range over which the specific heat is negative.
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• The mean field approximation: retain in the sum only the term for which the

summand reaches the maximum value
∑

{na}

eS[na] ≈ eS[na,max]
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∫
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gives

ρ(x) = A exp(−βφ(x)); where φ(x) =

∫

d3yU(x, y)ρ(y)

• In the case of gravitational interaction:

ρ(x) = A exp(−βφ(x)); φ(x) = −G

∫

ρ(y)d3y

|x − y|
.

gives the configuration of extremal entropy for a gravitating system

in the mean field limit.

• For gravitational interactions without a short distance cut-off, the

quantity eS is divergent. A short distance cut-off is needed to justify

the entire procedure.
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1. Systems with (RE/GM2) < −0.335 cannot evolve into isothermal

spheres. Entropy has no extremum for such systems.

2. Systems with ((RE/GM2) > −0.335) and (ρ(0) > 709 ρ(R)) can exist

in a meta-stable (saddle point state) isothermal sphere

configuration. The entropy extrema exist but they are not local

maxima.

3. Systems with ((RE/GM2) > −0.335) and (ρ(0) < 709 ρ(R)) can form

isothermal spheres which are local maximum of entropy.

• Reference:

V.A. Antonov, V.A. : Vest. Leningrad Univ. 7, 135 (1962);

Translation: IAU Symposium 113, 525 (1985).

T.Padmanabhan: Astrophys. Jour. Supp. , 71, 651 (1989).
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• Basic equation:

∇2φ = 4πGρce
−β[φ(x)−φ(0)]; ρc = ρ(0)

• Let

L0 ≡ (4πGρcβ)1/2 , M0 = 4πρcL
3
0, φ0 ≡ β−1 =

GM0

L0

with dimensionless variables:

x ≡
r

L0

, n ≡
ρ

ρc
, m =

M (r)

M0

, y ≡ β [φ− φ (0)] .

• Then
1

x2

d

dx
(x2dy

dx
) = e−y; y(0) = y′(0) = 0

• Singular solution:

n =
(

2/x2
)

,m = 2x, y = 2 lnx
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= −
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• The singular point is at: us = 1, vs = 2; corresponding to the

solution n = (2/x2),m = 2x.

• All solutions tend to this asymptotically for large r by spiralling

around the singular point in the u− v plane.

• Finite total mass for the system requires a large distance cut-off at

some r = R.
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[D.Lynden-Bell, R. Wood, (1968), MNRAS, 138, p.495.]
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∫ x0

0

dx(3nx2 − 2mnx)

=
GM2

0

2L0

∫ x0

0

dx
d

dx
{2nx3 − 3m} =

GM2
0

L0

{n0x
3
0 −

3

2
m0}

• The combination (RE/GM2) is a function of (u, v) alone.

λ =
RE

GM2
=

1

v0

{u0 −
3

2
}.

• An isothermal sphere must lie on the curve

v =
1

λ

(

u−
3

2

)

; λ ≡
RE

GM2



[T. Padmanabhan, Physics Reports, 188, 285 (1990).]
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• Transverse velocity in an encounter:

δv⊥ ≃
(

Gm/b2
)

(2b/v) = (2Gm/bv)

• ”Hard” collisions: ∆v⊥ ≈ v; so b ≤ bc = Gm/v2. The relevant relaxation timescale:

thard ≃
1

(nσv)
≃

R3v3

N (G2m2)
≃
NR3v3

G2M2
≈ N(R/v)

• More subtle is the effect of ”soft” collisions which is diffusion in the velocity

space in which the (∆v⊥)2 add up linearly with time.

〈(δv⊥)2〉total ≃ ∆t

∫ b2

b1

(2πbdb) (vn)

(

G2m2

b2v2

)

=
2πnG2m2

v
∆t ln

(

b2

b1

)

.

• Take b2 = R= size of the system, b1 = bc. Then

(b2/b1) ≃
(

Rv2/Gm
)

= N
(

Rv2/GM
)

≃ N

in virial equilibrium. So

tsoft ≃
v3

2πG2m2n lnN
≃

(

N

lnN

)(

R

v

)

≃

(

thard

lnN

)



Publication date: 1942



Pages 48 to 73 gives the derivation of TE and TD!









Pages 317 to 320 contain the derivation by Jeans!







First appearance of lnN





CHANDRA’S COMMENT ON THE WORK OF JEANS
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• This can’t be the whole story!

• We need a dynamical friction to reach steady state with

Maxwellian distribution of velocities.

• Chandra seems to have realized this soon after the

publication of the book!!
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• Diffusion current as the source term:

df

dt
=
∂f

∂t
+ v.

∂f

∂x
−∇φ.

∂f

∂v
= −

∂Jα

∂pα

• Form of the current can be shown to be:

Jα =
B0

2

∫

d l′
{

f
∂f ′

∂lβ
− f ′∂f

∂lβ

}

.

{

δαβ

k
−
kαkβ

k3

}

where B0 = 4πG2m5L; and L =
b2
∫

b1

db
b

= ln
(

b2
b1

)
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TWO FOR THE PRICE OF ONE!

• Current:

Jα =
B0

2

∫

d l′
{

f
∂f ′

∂lβ
− f ′ ∂f

∂lβ

}

.

{

δαβ

k
−
kαkβ

k3

}

• The term proportional to f gives dynamical friction.

The term proportional to (∂f/∂lβ) increases the velocity

dispersion.

• The current Jα vanishes for Maxwell distribution, as it

should!
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AN ILLUSTRATIVE TOY MODEL

• Note that

Jα(l) ≡ aα(l)f(l) −
1

2

∂

∂lβ

{

σ2
αβf
}

where aα = (∂η/∂lα) , σ2
αβ = (∂2ψ/∂lα∂lβ)

• Aside:

∇2ψ = η; ∇2
l η(l) = ∇2

l

{

2

∫

dl′
f(l′)
|l − l′|

}

= −8πf(l)

• Treat the coefficients as constants to understand the structure of

the equation:

∂f(v, t)

∂t
=

∂

∂v

{

(αv)f +
σ2

2

∂f

∂v

}

≡ −
∂J

∂v

• An initial distribution f(v, 0) = δD(v − v0) evolves to:

f(v, t) =

[

α

πσ2(1 − e−2αt)

]1/2

exp

[

−
α(v − v0e−αt)2

σ2(1 − e−2αt)

]
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• The mean velocity decays to zero:

< v >= v0e
−αt

• The distribution tends to Maxwellian limit with velocity dispersion

< v2 > − < v >2=
σ2

α
(1 − e−2αt) →

σ2

α

• The interplay between the two effects is obvious.



HISTORY: OVERLOOKING LANDAU (1936)!



HISTORY: OVERLOOKING LANDAU (1936)!

Footnote is incorrect; Landau’s expression has both dynamical friction and velocity

dispersion!
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GRAVITATIONAL CLUSTERING IN EXPANDING UNIVERSE

– SOME KEY ISSUES –

• If the initial power spectrum is sharply peaked in a narrow band of

wavelengths, how does the evolution transfer the power to other

scales?

• What is the asymptotic nature of evolution for the self gravitating

system in an expanding background?

• Does the gravitational clustering at late stages wipe out the

memory of initial conditions ?

• Do the virialized structures formed in an expanding universe due to

gravitational clustering have any invariant properties? Can their

structure be understood from first principles?

• How can one connect up the local behaviour of gravitating systems

to the evolution of clustering in the universe?



BASIC DEFINITIONS

• Density:

ρ(x, t) =
m

a3(t)

∑

i

δD[x − xi(t)]

• Mean density:

ρb(t) ≡

∫

d3x

V
ρ(x, t) =

m

a3(t)

(

N

V

)

=
M

a3V
=
ρ0

a3

• Density contrast:

1 + δ(x, t) ≡
ρ(x, t)

ρb
=
V

N

∑

i

δD[x − xi(t)] =

∫

dqδD[x − xT (t, q)].

• Density contrast in Fourier space:

δk(t) ≡

∫

d3xe−ik·xδ(x, t) =

∫

d3q exp[−ik.xT (t, q)] − (2π)3δD(k)
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THE EXACT (BUT USELESS) DESCRIPTION

• Density contrast in Fourier space satisfies:

δ̈k + 2
ȧ

a
δ̇k = 4πGρbδk + Ak −Bk

with

Ak = 4πGρb

∫

d3k′

(2π)3
δk′δk−k′

[

k.k′

k′2

]

Bk =

∫

d3q (k.ẋT )
2 exp [−ik.xT (t, q)]

• Coupled exact equations:

φ̈k + 4
ȧ

a
φ̇k = −

1

2a2

∫

d3p

(2π)3
φ 1

2
k+pφ 1

2
k−p

[

(

k

2

)2

+ p2 − 2

(

k.p

k

)2
]

+

(

3H2
0

2

)
∫

d3q

a

(

k.ẋ

k

)2

eik.x

ẍ + 2
ȧ

a
ẋ = −

1

a2
∇xφ = −

1

a2

∫

ikφk exp i(k · x);
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“Renormalizability” of gravity

• One can then show that: The term (Ak −Bk) receives contribution

only from particles which are not bound to any of the clusters to

the order O(k2R2). (Peebles, 1980)

• Allows one to ignore contributions from virialised systems and treat

the rest in Zeldovich (-like) approximation. Then one gets:

H2
0

(

a
d2

da2
+

7

2

d

da

)

φk = −
2

3

∫

d3p
(2π)3

φL1
2

k+pφ
L
1

2
k−p

[

(

k

2

)2

−

(

k.p
k

)2
]

−
1

2

∫ ′ d3p

(2π)3
φ1

2
k+pφ1

2
k−p

[

(

k

2

)2

+ p2 − 2

(

k.p

k

)2
]

(T.P, 2002)
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Evolution at large scales

• Ignore the terms Ak and Bk. Then:

δ̈k + 2
ȧ

a
δ̇k = 4πGρbδk

• For a ∝ t2/3, ρb ∝ a−3, the growing solution is:

δk ∝ a; P (k) = |δk|
2 ∝ a2; ξ(a, x) ∝ a2

• BUT: If δk → 0 for certain range of k at t = t0 (but is

nonzero elsewhere) then (Ak −Bk) ≫ 4πGρbδk and the

growth of perturbations around k will be entirely

determined by nonlinear effects.

• There is inverse cascade of power in gravitational

clustering! (Zeldovich, 1965)



Bagla, T.P, (1997) MNRAS, 286, 1023
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k3P(k)
2a aP k

4 4

L
k−1



LINEAR REGIME

QUASI−LINEAR REGIME

Prediction from stable clustering

NON−LINEAR REGIME

Bagla, Engineer, TP (1998), Ap.J.,495, 25
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‘EQUIPARTITION’ OF ENERGY FLOW

• If the local power law index is n, then one can show that in the

linear regime:

EL(a, x) ≈ ax−(n+2)

• In the quasilinear regime:

EQL(a, x) ≈ a
2−n

n+4x−
2n+5

n+4 ;

• In the nonlinear regime:

ENL(a, x) ≈ a
1−n

n+5x−
2n+4

n+5 ;

• NEW FEATURE: The energy flow is form invariant

(“equipartition”) when n = −1 in QL and n = −2 in the NL regimes!

Then E ∝ a in all three regimes.
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k3P(k)
2a

aP k
−12

aP k
4 4

L
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aP k
−12

aP k
−22

k
3

P(k)

2a

k
−1

aP 
2

f(k)



Injected initial power spectrum

P(k) ~ k −1

Bagla, T.P, (1997) MNRAS, 286, 1023



Late time power spectra for 3 different
initial injected spectra

P(k) ~ k −1

Bagla, T.P, (1997) MNRAS, 286, 1023



Asymptotic universality in nonlinear clustering

(T.P., S. Ray, 2006)
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Summary

• Chandra pioneered the use of statistical physics in the

study of gravitating systems.

• His approach to this subject shows the characteristic

rigour employed as a matter of policy rather than out of

necessity.

• The subject is alive and well and still has several open

questions especially in the context of cosmology.
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