Statistical Mechanics of Gravitating Systems

...and some curious history of Chandra's rare misses!
T. Padmanabhan
(IUCAA, Pune, INDIA)

Chandra Centenary Conference
Bangalore, India
8 December 2010

Phases of Chandra's life

[1939]

[1961]

[1942]

[1983]

[1950]

[1995]

GRAVITATIONAL N-BODY PROBLEM

(N particles, mass $m, U(r)=-\frac{G m^{2}}{r}$)

GRAVITATIONAL N-BODY PROBLEM

GRAVITATIONAL N-BODY PROBLEM

Non cosmological;
no bg. expansion
\downarrow
PHASE TRANSITIONS

MATTER PHYSICS

GRAVITATIONAL N-BODY PROBLEM

$$
\left(\mathrm{N} \text { particles, mass } \mathrm{m}, \mathrm{U}(\mathrm{r})=-\quad \frac{\mathrm{Gm}^{2}}{r}\right)
$$

Non cosmological;
no bg. expansion

PHASE TRANSITIONS

Cosmological; bg. expansion a(t)

GRAVITATIONAL N-BODY PROBLEM

GRAVITATIONAL N-BODY PROBLEM

PLAN OF THE TALK

- FINITE SELF-GRAVITATING SYSTEMS OF PARTICLES
- General features
- Mean field description: Isothermal sphere
- Antonov instability
- RELAXATION TIME AND DYNAMICAL FRICTION
- Chandra's contribution
- Historical background
- GRAVITATING PARTICLES IN EXPANDING BACKGROUND
- General features, Open questions
- Power transfer, Inverse cascade
- Universality

BASICS OF STATISTICAL MECHANICS

- Density of states:

$$
\Gamma(E)=\int d p d q \theta_{D}[E-H(p, q)] ; \quad g(E)=\frac{d \Gamma(E)}{d E}
$$

BASICS OF STATISTICAL MECHANICS

- Density of states:

$$
\Gamma(E)=\int d p d q \theta_{D}[E-H(p, q)] ; \quad g(E)=\frac{d \Gamma(E)}{d E}
$$

- Microcanonical description: Entropy $S(E)=\ln g(E)$ where

$$
T(E)=\left(\frac{\partial S}{\partial E}\right)^{-1} ; P=T\left(\frac{\partial S}{\partial V}\right)
$$

BASICS OF STATISTICAL MECHANICS

- Density of states:

$$
\Gamma(E)=\int d p d q \theta_{D}[E-H(p, q)] ; \quad g(E)=\frac{d \Gamma(E)}{d E}
$$

- Microcanonical description: Entropy $S(E)=\ln g(E)$ where

$$
T(E)=\left(\frac{\partial S}{\partial E}\right)^{-1} ; P=T\left(\frac{\partial S}{\partial V}\right)
$$

- Example: Ideal gas with $H \propto \sum p_{i}^{2}$ has:

$$
\Gamma \sim V^{N} E^{3 N / 2} \sim g(E) ; \quad T(E)=(2 E / 3 N) ; \quad P / T=N / V
$$

- Density of states:

$$
\Gamma(E)=\int d p d q \theta_{D}[E-H(p, q)] ; \quad g(E)=\frac{d \Gamma(E)}{d E}
$$

- Microcanonical description: Entropy $S(E)=\ln g(E)$ where

$$
T(E)=\left(\frac{\partial S}{\partial E}\right)^{-1} ; P=T\left(\frac{\partial S}{\partial V}\right)
$$

- Example: Ideal gas with $H \propto \sum p_{i}^{2}$ has:

$$
\Gamma \sim V^{N} E^{3 N / 2} \sim g(E) ; \quad T(E)=(2 E / 3 N) ; \quad P / T=N / V
$$

- Canonical description:

$$
Z(T)=\int d p d q \exp [-\beta H(p, q)]=\int d E g(E) \exp [-\beta E]=e^{-\beta F}
$$

with

$$
\bar{E}=-(\partial \ln Z / \partial \beta) ; \bar{P}=T(\partial \ln Z / \partial V)
$$

- Density of states:

$$
\Gamma(E)=\int d p d q \theta_{D}[E-H(p, q)] ; \quad g(E)=\frac{d \Gamma(E)}{d E}
$$

- Microcanonical description: Entropy $S(E)=\ln g(E)$ where

$$
T(E)=\left(\frac{\partial S}{\partial E}\right)^{-1} ; P=T\left(\frac{\partial S}{\partial V}\right)
$$

- Example: Ideal gas with $H \propto \sum p_{i}^{2}$ has:

$$
\Gamma \sim V^{N} E^{3 N / 2} \sim g(E) ; \quad T(E)=(2 E / 3 N) ; \quad P / T=N / V
$$

- Canonical description:

$$
Z(T)=\int d p d q \exp [-\beta H(p, q)]=\int d E g(E) \exp [-\beta E]=e^{-\beta F}
$$

with

$$
\bar{E}=-(\partial \ln Z / \partial \beta) ; \bar{P}=T(\partial \ln Z / \partial V)
$$

- If energy is extensive, these descriptions are equivalent for most systems to $\mathcal{O}(\ln N / N)$.

THE TROUBLE WITH GRAVITATING SYSTEMS

THE TROUBLE WITH GRAVITATING SYSTEMS

- Long range interaction with no shielding. Energy is not extensive.

THE TROUBLE WITH GRAVITATING SYSTEMS

- Long range interaction with no shielding. Energy is not extensive.
- Microcanonical and Canonical descriptions are not equivalent.

THE TROUBLE WITH GRAVITATING SYSTEMS

- Long range interaction with no shielding. Energy is not extensive.
- Microcanonical and Canonical descriptions are not equivalent.
- The $g(E)$ and $S(E)$ requires short-distance cutoff for finiteness.

FINITE GRAVITATING SYSTEMS

- GENERAL DESCRIPTION -

FINITE GRAVITATING SYSTEMS

- GENERAL DESCRIPTION -
- Typical systems have two natural energy scales: $E_{1}=\left(-G m^{2} / a\right)$ and $E_{2}=\left(-G m^{2} / R\right) ; a \ll R$.

FINITE GRAVITATING SYSTEMS

- GENERAL DESCRIPTION -
- Typical systems have two natural energy scales: $E_{1}=\left(-G m^{2} / a\right)$ and $E_{2}=\left(-G m^{2} / R\right) ; a \ll R$. Virial theorem gives: $2 K+U=3 P V+U_{0}$.
- GENERAL DESCRIPTION -
- Typical systems have two natural energy scales: $E_{1}=\left(-G m^{2} / a\right)$ and $E_{2}=\left(-G m^{2} / R\right) ; a \ll R$. Virial theorem gives: $2 K+U=3 P V+U_{0}$.
- For $E \gg E_{2}$, gravity is not strong enough and the system behaves like a gas confined by the container. High temperature phase with positive specific heat; $2 K \approx 3 P V$.
- GENERAL DESCRIPTION -
- Typical systems have two natural energy scales: $E_{1}=\left(-G m^{2} / a\right)$ and $E_{2}=\left(-G m^{2} / R\right) ; a \ll R$. Virial theorem gives: $2 K+U=3 P V+U_{0}$.
- For $E \gg E_{2}$, gravity is not strong enough and the system behaves like a gas confined by the container. High temperature phase with positive specific heat; $2 K \approx 3 P V$.
- For $E_{1} \ll E \ll E_{2}$, the system is unaffected by either the box or the short distance cutoff; dominated entirely by gravity and has negative specific heat. $2 K+U \approx 0$.

- GENERAL DESCRIPTION -

- Typical systems have two natural energy scales: $E_{1}=\left(-G m^{2} / a\right)$ and $E_{2}=\left(-G m^{2} / R\right) ; a \ll R$. Virial theorem gives: $2 K+U=3 P V+U_{0}$.
- For $E \gg E_{2}$, gravity is not strong enough and the system behaves like a gas confined by the container. High temperature phase with positive specific heat; $2 K \approx 3 P V$.
- For $E_{1} \ll E \ll E_{2}$, the system is unaffected by either the box or the short distance cutoff; dominated entirely by gravity and has negative specific heat. $2 K+U \approx 0$.
- Since canonical ensemble cannot lead to negative specific heat, microcanonical and canonical ensembles differ drastically in this range. Canonical ensemble leads to a phase transition.

- GENERAL DESCRIPTION -

- Typical systems have two natural energy scales: $E_{1}=\left(-G m^{2} / a\right)$ and $E_{2}=\left(-G m^{2} / R\right) ; a \ll R$. Virial theorem gives: $2 K+U=3 P V+U_{0}$.
- For $E \gg E_{2}$, gravity is not strong enough and the system behaves like a gas confined by the container. High temperature phase with positive specific heat; $2 K \approx 3 P V$.
- For $E_{1} \ll E \ll E_{2}$, the system is unaffected by either the box or the short distance cutoff; dominated entirely by gravity and has negative specific heat. $2 K+U \approx 0$.
- Since canonical ensemble cannot lead to negative specific heat, microcanonical and canonical ensembles differ drastically in this range. Canonical ensemble leads to a phase transition.
- As we go to $E \simeq E_{1}$, the hard core nature of the particles begins to be felt and the gravity is again resisted; low temperature phase with positive specific heat. $U \approx U_{0}$.

- GENERAL DESCRIPTION -

- Typical systems have two natural energy scales: $E_{1}=\left(-G m^{2} / a\right)$ and $E_{2}=\left(-G m^{2} / R\right) ; a \ll R$. Virial theorem gives: $2 K+U=3 P V+U_{0}$.
- For $E \gg E_{2}$, gravity is not strong enough and the system behaves like a gas confined by the container. High temperature phase with positive specific heat; $2 K \approx 3 P V$.
- For $E_{1} \ll E \ll E_{2}$, the system is unaffected by either the box or the short distance cutoff; dominated entirely by gravity and has negative specific heat. $2 K+U \approx 0$.
- Since canonical ensemble cannot lead to negative specific heat, microcanonical and canonical ensembles differ drastically in this range. Canonical ensemble leads to a phase transition.
- As we go to $E \simeq E_{1}$, the hard core nature of the particles begins to be felt and the gravity is again resisted; low temperature phase with positive specific heat. $U \approx U_{0}$.
- Increasing R increases the range over which the specific heat is negative.

GENERIC BEHAVIOUR
T. Padmanabhan, Physics Reports, 188, 285 (1990).

GENERIC BEHAVIOUR
T. Padmanabhan, Physics Reports, 188, 285 (1990).

GENERIC BEHAVIOUR
T. Padmanabhan, Physics Reports, 188, 285 (1990).

GENERIC BEHAVIOUR
T. Padmanabhan, Physics Reports, 188, 285 (1990).

GENERIC BEHAVIOUR
T. Padmanabhan, Physics Reports, 188, 285 (1990).

Mean field description of many-body systems

Mean field description of many-body systems

- A system of N particles interacting through the two-body potential $U(\mathbf{x}, \mathbf{y})$. The entropy S of this system

$$
\mathrm{e}^{S}=g(E)=\frac{1}{N!} \int d^{3 N} x d^{3 N} p \delta(E-H) \propto \frac{1}{N!} \int d^{3 N} x\left[E-\frac{1}{2} \sum_{i \neq j} U\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right]^{\frac{3 N}{2}}
$$

- A system of N particles interacting through the two-body potential $U(\mathbf{x}, \mathbf{y})$. The entropy S of this system

$$
\mathrm{e}^{S}=g(E)=\frac{1}{N!} \int d^{3 N} x d^{3 N} p \delta(E-H) \propto \frac{1}{N!} \int d^{3 N} x\left[E-\frac{1}{2} \sum_{i \neq j} U\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right]^{\frac{3 N}{2}}
$$

- Divide spatial volume V be divided into M cells of equal size. Integration over the particle coordinates $\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)=$ sum over the number of particles n_{a} in the cell centered at \mathbf{x}_{a} (where $a=1,2, \ldots, M$).
- A system of N particles interacting through the two-body potential $U(\mathbf{x}, \mathbf{y})$. The entropy S of this system

$$
\mathrm{e}^{S}=g(E)=\frac{1}{N!} \int d^{3 N} x d^{3 N} p \delta(E-H) \propto \frac{1}{N!} \int d^{3 N} x\left[E-\frac{1}{2} \sum_{i \neq j} U\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right]^{\frac{3 N}{2}}
$$

- Divide spatial volume V be divided into M cells of equal size. Integration over the particle coordinates $\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)=$ sum over the number of particles n_{a} in the cell centered at \mathbf{x}_{a} (where $a=1,2, \ldots, M$).
- This gives:

$$
\begin{gathered}
\mathrm{e}^{S} \approx \sum_{n_{1}=1}^{\infty} \sum_{n_{2}=1}^{\infty} \ldots \sum_{n_{M}=1}^{\infty} \delta\left(N-\sum_{a} n_{a}\right) \exp S\left[\left\{n_{a}\right\}\right] \\
S\left[\left\{n_{a}\right\}\right]=\frac{3 N}{2} \ln \left[E-\frac{1}{2} \sum_{a \neq b}^{M} n_{a} U\left(\mathbf{x}_{a}, \mathbf{x}_{b}\right) n_{b}\right]-\sum_{a=1}^{M} n_{a} \ln \left(\frac{n_{a} M}{\mathrm{e} V}\right)
\end{gathered}
$$

Mean field description of many-body systems

- A system of N particles interacting through the two-body potential $U(\mathbf{x}, \mathbf{y})$. The entropy S of this system

$$
\mathrm{e}^{S}=g(E)=\frac{1}{N!} \int d^{3 N} x d^{3 N} p \delta(E-H) \propto \frac{1}{N!} \int d^{3 N} x\left[E-\frac{1}{2} \sum_{i \neq j} U\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right]^{\frac{3 N}{2}}
$$

- Divide spatial volume V be divided into M cells of equal size. Integration over the particle coordinates $\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)=$ sum over the number of particles n_{a} in the cell centered at \mathbf{x}_{a} (where $a=1,2, \ldots, M$).
- This gives:

$$
\begin{gathered}
\mathrm{e}^{S} \approx \sum_{n_{1}=1}^{\infty} \sum_{n_{2}=1}^{\infty} \ldots \sum_{n_{M}=1}^{\infty} \delta\left(N-\sum_{a} n_{a}\right) \exp S\left[\left\{n_{a}\right\}\right] \\
S\left[\left\{n_{a}\right\}\right]=\frac{3 N}{2} \ln \left[E-\frac{1}{2} \sum_{a \neq b}^{M} n_{a} U\left(\mathbf{x}_{a}, \mathbf{x}_{b}\right) n_{b}\right]-\sum_{a=1}^{M} n_{a} \ln \left(\frac{n_{a} M}{\mathrm{e} V}\right)
\end{gathered}
$$

- The mean field approximation: retain in the sum only the term for which the summand reaches the maximum value

$$
\sum_{\left\{n_{a}\right\}} \mathrm{e}^{S\left[n_{a}\right]} \approx \mathrm{e}^{S\left[n_{a, \max }\right]}
$$

Mean field description of self-gravitating systems

Mean field description of self-gravitating systems

- Take the continuum limit with

$$
n_{a, \max } \frac{M}{V}=\rho\left(\mathbf{x}_{a}\right) ; \quad \sum_{a=1}^{M} \rightarrow \frac{M}{V} \int
$$

gives

$$
\rho(\mathbf{x})=A \exp (-\beta \phi(\mathbf{x})) ; \quad \text { where } \quad \phi(\mathbf{x})=\int d^{3} \mathbf{y} U(\mathbf{x}, \mathbf{y}) \rho(\mathbf{y})
$$

Mean field description of self-gravitating systems

- Take the continuum limit with

$$
n_{a, \max } \frac{M}{V}=\rho\left(\mathbf{x}_{a}\right) ; \quad \sum_{a=1}^{M} \rightarrow \frac{M}{V} \int
$$

gives

$$
\rho(\mathbf{x})=A \exp (-\beta \phi(\mathbf{x})) ; \quad \text { where } \quad \phi(\mathbf{x})=\int d^{3} \mathbf{y} U(\mathbf{x}, \mathbf{y}) \rho(\mathbf{y})
$$

- In the case of gravitational interaction:

$$
\rho(\mathbf{x})=A \exp (-\beta \phi(\mathbf{x})) ; \quad \phi(\mathbf{x})=-G \int \frac{\rho(\mathbf{y}) d^{3} \mathbf{y}}{|\mathbf{x}-\mathbf{y}|}
$$

gives the configuration of extremal entropy for a gravitating system in the mean field limit.

Mean field description of self-gravitating systems

- Take the continuum limit with

$$
n_{a, \max } \frac{M}{V}=\rho\left(\mathbf{x}_{a}\right) ; \quad \sum_{a=1}^{M} \rightarrow \frac{M}{V} \int
$$

gives

$$
\rho(\mathbf{x})=A \exp (-\beta \phi(\mathbf{x})) ; \quad \text { where } \quad \phi(\mathbf{x})=\int d^{3} \mathbf{y} U(\mathbf{x}, \mathbf{y}) \rho(\mathbf{y})
$$

- In the case of gravitational interaction:

$$
\rho(\mathbf{x})=A \exp (-\beta \phi(\mathbf{x})) ; \quad \phi(\mathbf{x})=-G \int \frac{\rho(\mathbf{y}) d^{3} \mathbf{y}}{|\mathbf{x}-\mathbf{y}|}
$$

gives the configuration of extremal entropy for a gravitating system in the mean field limit.

- For gravitational interactions without a short distance cut-off, the quantity e^{S} is divergent. A short distance cut-off is needed to justify the entire procedure.

ANTONOV INSTABILITY

ANTONOV INSTABILITY

1. Systems with $\left(R E / G M^{2}\right)<-0.335$ cannot evolve into isothermal spheres. Entropy has no extremum for such systems.

ANTONOV INSTABILITY

1. Systems with $\left(R E / G M^{2}\right)<-0.335$ cannot evolve into isothermal spheres. Entropy has no extremum for such systems.
2. Systems with $\left(\left(R E / G M^{2}\right)>-0.335\right)$ and $(\rho(0)>709 \rho(R))$ can exist in a meta-stable (saddle point state) isothermal sphere configuration. The entropy extrema exist but they are not local maxima.

ANTONOV INSTABILITY

1. Systems with $\left(R E / G M^{2}\right)<-0.335$ cannot evolve into isothermal spheres. Entropy has no extremum for such systems.
2. Systems with $\left(\left(R E / G M^{2}\right)>-0.335\right)$ and $(\rho(0)>709 \rho(R))$ can exist in a meta-stable (saddle point state) isothermal sphere configuration. The entropy extrema exist but they are not local maxima.
3. Systems with ($\left.\left(R E / G M^{2}\right)>-0.335\right)$ and $(\rho(0)<709 \rho(R))$ can form isothermal spheres which are local maximum of entropy.

ANTONOV INSTABILITY

1. Systems with $\left(R E / G M^{2}\right)<-0.335$ cannot evolve into isothermal spheres. Entropy has no extremum for such systems.
2. Systems with $\left(\left(R E / G M^{2}\right)>-0.335\right)$ and $(\rho(0)>709 \rho(R))$ can exist in a meta-stable (saddle point state) isothermal sphere configuration. The entropy extrema exist but they are not local maxima.
3. Systems with ($\left.\left(R E / G M^{2}\right)>-0.335\right)$ and $(\rho(0)<709 \rho(R)$) can form isothermal spheres which are local maximum of entropy.

- Reference:
V.A. Antonov, V.A. : Vest. Leningrad Univ. 7, 135 (1962); Translation: IAU Symposium 113, 525 (1985).
T.Padmanabhan: Astrophys. Jour. Supp. , 71, 651 (1989).

Isothermal sphere

- Basic equation:

$$
\nabla^{2} \phi=4 \pi G \rho_{c} e^{-\beta[\phi(\mathbf{x})-\phi(0)]} ; \quad \rho_{c}=\rho(0)
$$

Isothermal sphere

- Basic equation:

$$
\nabla^{2} \phi=4 \pi G \rho_{c} e^{-\beta[\phi(\mathbf{x})-\phi(0)]} ; \quad \rho_{c}=\rho(0)
$$

- Let

$$
L_{0} \equiv\left(4 \pi G \rho_{c} \beta\right)^{1 / 2}, \quad M_{0}=4 \pi \rho_{c} L_{0}^{3}, \quad \phi_{0} \equiv \beta^{-1}=\frac{G M_{0}}{L_{0}}
$$

with dimensionless variables:

$$
x \equiv \frac{r}{L_{0}}, \quad n \equiv \frac{\rho}{\rho_{c}}, \quad m=\frac{M(r)}{M_{0}}, \quad y \equiv \beta[\phi-\phi(0)] .
$$

- Basic equation:

$$
\nabla^{2} \phi=4 \pi G \rho_{c} e^{-\beta[\phi(\mathbf{x})-\phi(0)]} ; \quad \rho_{c}=\rho(0)
$$

- Let

$$
L_{0} \equiv\left(4 \pi G \rho_{c} \beta\right)^{1 / 2}, \quad M_{0}=4 \pi \rho_{c} L_{0}^{3}, \quad \phi_{0} \equiv \beta^{-1}=\frac{G M_{0}}{L_{0}}
$$

with dimensionless variables:

$$
x \equiv \frac{r}{L_{0}}, \quad n \equiv \frac{\rho}{\rho_{c}}, \quad m=\frac{M(r)}{M_{0}}, \quad y \equiv \beta[\phi-\phi(0)]
$$

- Then

$$
\frac{1}{x^{2}} \frac{d}{d x}\left(x^{2} \frac{d y}{d x}\right)=\mathrm{e}^{-y} ; \quad y(0)=y^{\prime}(0)=0
$$

- Basic equation:

$$
\nabla^{2} \phi=4 \pi G \rho_{c} e^{-\beta[\phi(\mathbf{x})-\phi(0)]} ; \quad \rho_{c}=\rho(0)
$$

- Let

$$
L_{0} \equiv\left(4 \pi G \rho_{c} \beta\right)^{1 / 2}, \quad M_{0}=4 \pi \rho_{c} L_{0}^{3}, \quad \phi_{0} \equiv \beta^{-1}=\frac{G M_{0}}{L_{0}}
$$

with dimensionless variables:

$$
x \equiv \frac{r}{L_{0}}, \quad n \equiv \frac{\rho}{\rho_{c}}, \quad m=\frac{M(r)}{M_{0}}, \quad y \equiv \beta[\phi-\phi(0)] .
$$

- Then

$$
\frac{1}{x^{2}} \frac{d}{d x}\left(x^{2} \frac{d y}{d x}\right)=\mathrm{e}^{-y} ; \quad y(0)=y^{\prime}(0)=0
$$

- Singular solution:

$$
n=\left(2 / x^{2}\right), m=2 x, y=2 \ln x
$$

LANE-EMDEN VARIABLES

- Invariant under the transformation $y \rightarrow y+a ; x \rightarrow k x$ with $k^{2}=\mathrm{e}^{a}$.

LANE-EMDEN VARIABLES

- Invariant under the transformation $y \rightarrow y+a ; x \rightarrow k x$ with $k^{2}=\mathrm{e}^{a}$.
- Reduce the degree by choosing:

$$
v \equiv \frac{m}{x} ; \quad u \equiv \frac{n x^{3}}{m}=\frac{n x^{2}}{v}
$$

LANE-EMDEN VARIABLES

- Invariant under the transformation $y \rightarrow y+a ; x \rightarrow k x$ with $k^{2}=\mathrm{e}^{a}$.
- Reduce the degree by choosing:

$$
v \equiv \frac{m}{x} ; \quad u \equiv \frac{n x^{3}}{m}=\frac{n x^{2}}{v}
$$

$$
\frac{u}{v} \frac{d v}{d u}=-\frac{(u-1)}{(u+v-3)} ; \quad v(u=3)=0 ; \quad v^{\prime}(u=3)=-\frac{5}{3}
$$

LANE-EMDEN VARIABLES

- Invariant under the transformation $y \rightarrow y+a ; x \rightarrow k x$ with $k^{2}=\mathrm{e}^{a}$.
- Reduce the degree by choosing:

$$
\begin{gathered}
v \equiv \frac{m}{x} ; \quad u \equiv \frac{n x^{3}}{m}=\frac{n x^{2}}{v} \\
\frac{u}{v} \frac{d v}{d u}=-\frac{(u-1)}{(u+v-3)} ; \quad v(u=3)=0 ; \quad v^{\prime}(u=3)=-\frac{5}{3}
\end{gathered}
$$

- The singular point is at: $u_{s}=1, v_{s}=2$; corresponding to the solution $n=\left(2 / x^{2}\right), m=2 x$.

LANE-EMDEN VARIABLES

- Invariant under the transformation $y \rightarrow y+a ; x \rightarrow k x$ with $k^{2}=\mathrm{e}^{a}$.
- Reduce the degree by choosing:

$$
\begin{gathered}
v \equiv \frac{m}{x} ; \quad u \equiv \frac{n x^{3}}{m}=\frac{n x^{2}}{v} \\
\frac{u}{v} \frac{d v}{d u}=-\frac{(u-1)}{(u+v-3)} ; \quad v(u=3)=0 ; \quad v^{\prime}(u=3)=-\frac{5}{3}
\end{gathered}
$$

- The singular point is at: $u_{s}=1, v_{s}=2$; corresponding to the solution $n=\left(2 / x^{2}\right), m=2 x$.
- All solutions tend to this asymptotically for large r by spiralling around the singular point in the $u-v$ plane.

LANE-EMDEN VARIABLES

- Invariant under the transformation $y \rightarrow y+a ; x \rightarrow k x$ with $k^{2}=\mathrm{e}^{a}$.
- Reduce the degree by choosing:

$$
\begin{gathered}
v \equiv \frac{m}{x} ; \quad u \equiv \frac{n x^{3}}{m}=\frac{n x^{2}}{v} . \\
\frac{u}{v} \frac{d v}{d u}=-\frac{(u-1)}{(u+v-3)} ; \quad v(u=3)=0 ; \quad v^{\prime}(u=3)=-\frac{5}{3}
\end{gathered}
$$

- The singular point is at: $u_{s}=1, v_{s}=2$; corresponding to the solution $n=\left(2 / x^{2}\right), m=2 x$.
- All solutions tend to this asymptotically for large r by spiralling around the singular point in the $u-v$ plane.
- Finite total mass for the system requires a large distance cut-off at some $r=R$.

Chandra (1939) Introduction to the study of stellar structure

STUDY OF STELLAR STRUCTURE

singular solution, oscillating with respect to it and intersecting ip at points which asymptotically increase geometrically in the ratio $e^{2 \pi / \sqrt{7}}$.
27. Discussion of the isothermal equation in the (u, v) plane.-Wt shall conclude our discussion of the isothermal equation by a brie description of the solution-curves in the (u, v) plane.

Our variables are

$$
\begin{equation*}
u=\frac{\xi e^{-\psi}}{\psi^{\prime}} ; \quad v=\xi \psi^{\prime}, \tag{452}
\end{equation*}
$$

where u and v satisfy the first-order equation

$$
\begin{equation*}
\frac{u}{v} \frac{d v}{d u}=-\frac{u-\mathrm{I}}{u+v-3} . \tag{453}
\end{equation*}
$$

a) The locus of points at which the curves have horizontal tangents is given by

$$
\begin{equation*}
u=\mathrm{I}, \tag{454}
\end{equation*}
$$

which is a line parallel to the v-axis.
b) The locus of points at which the curves have vertical tangents is given by

$$
\begin{equation*}
u+v=3 . \tag{455}
\end{equation*}
$$

c) The two loci (454) and (455) intersect at the point

$$
\begin{equation*}
u_{s}=\mathrm{I} ; \quad v_{s}=2 \tag{456}
\end{equation*}
$$

It is clear, therefore, that the E-curve starts at the point ($u=3$, $v=0$) with a negative slope of $5 / 3$ and approaches the point $(u=I, v=2)$ by spiraling around it (cf. Fig. 20).
e) All the other solutions also spiral around this point, and it is clear that along these curves $v \rightarrow 0$ as $u \rightarrow \infty$. This arises because, as we have already seen, these solutions correspond to a ρ which vanishes at $\xi=0$ and at $\xi=\infty$, and hence ψ^{\prime}

Fig. 20.-The (u, v) curves $(n=\infty)$ must vanish for some finite ξ; for this value of $\xi, v=0$ and $u=\infty$.

GASKUGELN

ANWENDUNGEN DER ECHANISCHEN WÄRMETHEORIE

F KOSMOLOGISCHE UND METEOROLOGISCHE PROBLEME
von

Dr. R. EMDEN
PRIVATDOZENT FÜR PHYSIK UND METEOROLOGIE AM DER KGL, techaischen hochschule in müncakn

MIT 24 figuren, 12 DLAGRAMMEN UND 5 TAFELN IM TEXT

區

Erster Teil. Theorie.

im Kapitel IX, § 9 b) nachwiesen, - $\mathfrak{r}_{1} \frac{\omega v_{1}}{d r_{1}}$ mit wachsendem r_{1} um den Wert 2. Wir deuten in der Fig. 8 den Gang von $-\mathfrak{r}_{1} v_{1}^{\prime}$ als

Funktion von r_{1} an. In Wirklichkeit folgen die Abszissen der Ordinaten 2 immer genauer einer geometrischen Progression mit dem
[D.Lynden-Bell, R. Wood, (1968), MNRAS, 138, p.495.] $-$

Table I

z	$\left\|v_{1}\right\|$	ρ_{0} / ρ_{e}	Remarks
4.07	1.6I	$5 \cdot 0$	Turning point of $d M(z) / d z$ (the incremental increase of mass with radius).
4.74	I 93	$6 \cdot 8$	Zero of energy for an isolated system of given volume (i.e. the configuration in which the gravitational binding energy just balances the thermal energy).
$6 \cdot 45$	$2 \cdot 64$	14.1	Minimum of Gibbs free energy for equilibria of systems in contact with a heat bath at constant temperature. Onset of thermal instability at constant pressure (Ebert). Onset of negative» specific heat at constant pressure, C_{p}. Maximum of isotherm.
$7 \cdot 25$	$2 \cdot 93$	$18 \cdot 7$	Zero of enthalpy for an isolated system at given pressure.
$8 \cdot 99$	3.47	$32 \cdot 2$	Minimum of Helmholtz free energy for equilibria of systems in contact with a heat bath at constant temperature. Onset of thermal instability at constant volume. Onset of negative ${ }^{\star}$ specific heat at constant volume, C_{v}. Vertical tangent to isotherm. Schönberg-Chandrasekhar limit (approx.).
$22 \cdot 5$	$5 \cdot 65$	287	Minimum temperature for a given energy. Maximum energy for a given temperature.
$25 \cdot 8$	$5 \cdot 96$	389	Maximum entropy for an isolated equilibrium configuration at given pressure. Least enthalpy for an equilibrium state of given pressure. Onset of dynamical instability in thermally isolated systems at given pressure. Minimum of adiabat.
$34^{\circ} 2$	$6 \cdot 55$	709	Maximum entropy for an isolated equilibrium configuration of given volume (Antonov). Least total energy (greatest binding energy) for an equilibrium state at given volume. Maximum volume for an equilibrium state of given energy. Onset of the gravo-thermal instability in completely isolated systems. Vertical tangent to adiabat.

Chandra's comments on Emden's work

V. R. Emden. The publication of Emden's Gaskugeln marks the end of the first epoch in the study of stellar configurations. Emden's book not only systematizes the earlier work but also contains a fair proportion of new results and a wealth of material, including accurate and extensive tables of the necessary functions. This is not the place to describe the contents of Emden's book, but we may refer specifically to such parts of the analysis contained in our chapter iv which are due to Emden. They are:
I. The use of the (y, z) variables introduced in § 3. Indeed, Emden was the first to reduce the equation to one of the first order.
2. The discovery of the explicit formula for θ_{5}, independently of Schuster.
3. The discussion given in $\S \S 9,10, I I$, and $I 2$, and also the discussion in $\S I_{3}$, leading up to the two lemmas which in the form given are due to E. Hopf, M.N., 91, 653, 193I. These lemmas without rigorous proofs are already implicit in Emden's book (chap. xiii), and Emden himself uses them.
4. The analysis in § I4, and in particular the discovery of the behavior $\theta \sim C / \xi$ for $n<3$ as $\xi \rightarrow 0$.
5. Emden was fully aware of the fact that the E-solutions form a "grid," though the explicit theorem is due to R. H. Fowler.
6. The analysis in § I8. In particular, Emden was the first to isolate the critical role which $n=3.18767$ (Eq. [255]) plays in the subsequent discussion.
7. The discovery of the behavior near the origin of the general solutions for $3<n<5$. In particular, equations (272) and (285), which describe the behavior of θ as $\xi \rightarrow 0$.
8. The analysis of $\S I 9$.
9. The behavior of the general solutions as $\xi \rightarrow \infty$ for $5<n<\infty$.

Io. The use of the (y, z) variables in $\S 24$ for the isothermal gas sphere and the behavior of the general solution as $\xi \rightarrow \infty$.

It is thus seen that Emden's own investigations in this field have consisted almost entirely in the discussion of the general solutions; this aspect of his investigations has never been adequately recognized. Though there are a great number of references to Gaskugeln in the literature, it is unfortunate that what are generally associated with Emden's name have been derived by the earlier investigators. This is stated, not with a view to minimizing the value of Emden's very great work, but only to draw attention to the fundamental character of his own original contributions.

ENERGY OF THE ISOTHERMAL SPHERE

- The potential and kinetic energies are

$$
\begin{aligned}
U & =-\int_{0}^{R} \frac{G M(r)}{r} \frac{d M}{d r} d r=-\frac{G M_{0}^{2}}{L_{0}} \int_{0}^{x_{0}} m n x d x \\
K & =\frac{3}{2} \frac{M}{\beta}=\frac{3}{2} \frac{G M_{0}^{2}}{L_{0}} m\left(x_{0}\right)=\frac{G M_{0}^{2}}{L_{0}} \frac{3}{2} \int_{0}^{x_{0}} n x^{2} d x ; \quad x_{0}=R / L_{0}
\end{aligned}
$$

ENERGY OF THE ISOTHERMAL SPHERE

- The potential and kinetic energies are

$$
\begin{aligned}
U & =-\int_{0}^{R} \frac{G M(r)}{r} \frac{d M}{d r} d r=-\frac{G M_{0}^{2}}{L_{0}} \int_{0}^{x_{0}} m n x d x \\
K & =\frac{3}{2} \frac{M}{\beta}=\frac{3}{2} \frac{G M_{0}^{2}}{L_{0}} m\left(x_{0}\right)=\frac{G M_{0}^{2}}{L_{0}} \frac{3}{2} \int_{0}^{x_{0}} n x^{2} d x ; \quad x_{0}=R / L_{0}
\end{aligned}
$$

- So:

$$
\begin{aligned}
E & =K+U=\frac{G M_{0}^{2}}{2 L_{0}} \int_{0}^{x_{0}} d x\left(3 n x^{2}-2 m n x\right) \\
& =\frac{G M_{0}^{2}}{2 L_{0}} \int_{0}^{x_{0}} d x \frac{d}{d x}\left\{2 n x^{3}-3 m\right\}=\frac{G M_{0}^{2}}{L_{0}}\left\{n_{0} x_{0}^{3}-\frac{3}{2} m_{0}\right\}
\end{aligned}
$$

ENERGY OF THE ISOTHERMAL SPHERE

- The potential and kinetic energies are

$$
\begin{aligned}
U & =-\int_{0}^{R} \frac{G M(r)}{r} \frac{d M}{d r} d r=-\frac{G M_{0}^{2}}{L_{0}} \int_{0}^{x_{0}} m n x d x \\
K & =\frac{3}{2} \frac{M}{\beta}=\frac{3}{2} \frac{G M_{0}^{2}}{L_{0}} m\left(x_{0}\right)=\frac{G M_{0}^{2}}{L_{0}} \frac{3}{2} \int_{0}^{x_{0}} n x^{2} d x ; \quad x_{0}=R / L_{0}
\end{aligned}
$$

- So:

$$
\begin{aligned}
E & =K+U=\frac{G M_{0}^{2}}{2 L_{0}} \int_{0}^{x_{0}} d x\left(3 n x^{2}-2 m n x\right) \\
& =\frac{G M_{0}^{2}}{2 L_{0}} \int_{0}^{x_{0}} d x \frac{d}{d x}\left\{2 n x^{3}-3 m\right\}=\frac{G M_{0}^{2}}{L_{0}}\left\{n_{0} x_{0}^{3}-\frac{3}{2} m_{0}\right\}
\end{aligned}
$$

- The combination $\left(R E / G M^{2}\right)$ is a function of (u, v) alone.

$$
\lambda=\frac{R E}{G M^{2}}=\frac{1}{v_{0}}\left\{u_{0}-\frac{3}{2}\right\} .
$$

ENERGY OF THE ISOTHERMAL SPHERE

- The potential and kinetic energies are

$$
\begin{aligned}
U & =-\int_{0}^{R} \frac{G M(r)}{r} \frac{d M}{d r} d r=-\frac{G M_{0}^{2}}{L_{0}} \int_{0}^{x_{0}} m n x d x \\
K & =\frac{3}{2} \frac{M}{\beta}=\frac{3}{2} \frac{G M_{0}^{2}}{L_{0}} m\left(x_{0}\right)=\frac{G M_{0}^{2}}{L_{0}} \frac{3}{2} \int_{0}^{x_{0}} n x^{2} d x ; \quad x_{0}=R / L_{0}
\end{aligned}
$$

- So:

$$
\begin{aligned}
E & =K+U=\frac{G M_{0}^{2}}{2 L_{0}} \int_{0}^{x_{0}} d x\left(3 n x^{2}-2 m n x\right) \\
& =\frac{G M_{0}^{2}}{2 L_{0}} \int_{0}^{x_{0}} d x \frac{d}{d x}\left\{2 n x^{3}-3 m\right\}=\frac{G M_{0}^{2}}{L_{0}}\left\{n_{0} x_{0}^{3}-\frac{3}{2} m_{0}\right\}
\end{aligned}
$$

- The combination $\left(R E / G M^{2}\right)$ is a function of (u, v) alone.

$$
\lambda=\frac{R E}{G M^{2}}=\frac{1}{v_{0}}\left\{u_{0}-\frac{3}{2}\right\}
$$

- An isothermal sphere must lie on the curve

$$
v=\frac{1}{\lambda}\left(u-\frac{3}{2}\right) ; \quad \lambda \equiv \frac{R E}{G M^{2}}
$$

COLLISIONAL RELAXATION IN GRAVITATING SYSTEMS

COLLISIONAL RELAXATION IN GRAVITATING SYSTEMS

- Transverse velocity in an encounter:

$$
\delta v_{\perp} \simeq\left(G m / b^{2}\right)(2 b / v)=(2 G m / b v)
$$

- Transverse velocity in an encounter:

$$
\delta v_{\perp} \simeq\left(G m / b^{2}\right)(2 b / v)=(2 G m / b v)
$$

- "Hard" collisions: $\Delta v_{\perp} \approx v$; so $b \leq b_{c}=G m / v^{2}$. The relevant relaxation timescale:

$$
t_{\text {hard }} \simeq \frac{1}{(n \sigma v)} \simeq \frac{R^{3} v^{3}}{N\left(G^{2} m^{2}\right)} \simeq \frac{N R^{3} v^{3}}{G^{2} M^{2}} \approx N(R / v)
$$

COLLISIONAL RELAXATION IN GRAVITATING SYSTEMS

- Transverse velocity in an encounter:

$$
\delta v_{\perp} \simeq\left(G m / b^{2}\right)(2 b / v)=(2 G m / b v)
$$

- "Hard" collisions: $\Delta v_{\perp} \approx v$; so $b \leq b_{c}=G m / v^{2}$. The relevant relaxation timescale:

$$
t_{\text {hard }} \simeq \frac{1}{(n \sigma v)} \simeq \frac{R^{3} v^{3}}{N\left(G^{2} m^{2}\right)} \simeq \frac{N R^{3} v^{3}}{G^{2} M^{2}} \approx N(R / v)
$$

- More subtle is the effect of "soft" collisions which is diffusion in the velocity space in which the $\left(\Delta v_{\perp}\right)^{2}$ add up linearly with time.

COLLISIONAL RELAXATION IN GRAVITATING SYSTEMS

- Transverse velocity in an encounter:

$$
\delta v_{\perp} \simeq\left(G m / b^{2}\right)(2 b / v)=(2 G m / b v)
$$

- "Hard" collisions: $\Delta v_{\perp} \approx v$; so $b \leq b_{c}=G m / v^{2}$. The relevant relaxation timescale:

$$
t_{\text {hard }} \simeq \frac{1}{(n \sigma v)} \simeq \frac{R^{3} v^{3}}{N\left(G^{2} m^{2}\right)} \simeq \frac{N R^{3} v^{3}}{G^{2} M^{2}} \approx N(R / v)
$$

- More subtle is the effect of "soft" collisions which is diffusion in the velocity space in which the $\left(\Delta v_{\perp}\right)^{2}$ add up linearly with time.

$$
\left\langle\left(\delta v_{\perp}\right)^{2}\right\rangle_{\text {total }} \simeq \Delta t \int_{b_{1}}^{b_{2}}(2 \pi b d b)(v n)\left(\frac{G^{2} m^{2}}{b^{2} v^{2}}\right)=\frac{2 \pi n G^{2} m^{2}}{v} \Delta t \ln \left(\frac{b_{2}}{b_{1}}\right) .
$$

COLLISIONAL RELAXATION IN GRAVITATING SYSTEMS

- Transverse velocity in an encounter:

$$
\delta v_{\perp} \simeq\left(G m / b^{2}\right)(2 b / v)=(2 G m / b v)
$$

- "Hard" collisions: $\Delta v_{\perp} \approx v$; so $b \leq b_{c}=G m / v^{2}$. The relevant relaxation timescale:

$$
t_{\text {hard }} \simeq \frac{1}{(n \sigma v)} \simeq \frac{R^{3} v^{3}}{N\left(G^{2} m^{2}\right)} \simeq \frac{N R^{3} v^{3}}{G^{2} M^{2}} \approx N(R / v)
$$

- More subtle is the effect of "soft" collisions which is diffusion in the velocity space in which the $\left(\Delta v_{\perp}\right)^{2}$ add up linearly with time.

$$
\left\langle\left(\delta v_{\perp}\right)^{2}\right\rangle_{\text {total }} \simeq \Delta t \int_{b_{1}}^{b_{2}}(2 \pi b d b)(v n)\left(\frac{G^{2} m^{2}}{b^{2} v^{2}}\right)=\frac{2 \pi n G^{2} m^{2}}{v} \Delta t \ln \left(\frac{b_{2}}{b_{1}}\right) .
$$

- Take $b_{2}=R=$ size of the system, $b_{1}=b_{c}$. Then

$$
\left(b_{2} / b_{1}\right) \simeq\left(R v^{2} / G m\right)=N\left(R v^{2} / G M\right) \simeq N
$$

in virial equilibrium. So

$$
t_{\text {soft }} \simeq \frac{v^{3}}{2 \pi G^{2} m^{2} n \ln N} \simeq\left(\frac{N}{\ln N}\right)\left(\frac{R}{v}\right) \simeq\left(\frac{t_{\text {hard }}}{\ln N}\right)
$$

PRINCIPLES OF STELLAR DYNAMICS

By S. CHANDRASEKHAR
Yerkes Observatory

THE UNIVERSITY OF CHICAGO PRESS
CHICAGO • ILLINOIS

Pages 48 to 73 gives the derivation of T_{E} and T_{D} !

CHAPTER II
 THE TIME OF RELAXATION OF A STELLAR SYSTEM

As we stated in our introduction to the last chapter, in stellar dynamics we are primarily concerned with interpreting the observed state of motions in stellar systems in terms of the forces which govern the motions of the individual stars in the system and the laws of dynamics. In this monograph it will be assumed that the laws of Newtonian dynamics are adequate for such purposes. But this is not to imply that eventually it may not be found necessary to introduce ideas in stellar dynamics which are outside the scope of the classical laws. It is clearly necessary to work out fully the logical consequences of a system of stellar dynamics based on Newtonian laws before we can feel convinced of the need to go outside the framework of such laws. And it is the object of this monograph to set out the general principles of such a classical system of stellar dynamics.
2.1. An analysis of the nature of the forces acting on a star.-According to our remarks in the foregoing paragraph, we shall assume that the forces governing the motions of the individual stars in a stellar system are essentially of a gravitational character. In a general way it is clear that these forces arise, first, from the smoothedout distribution of matter in the system and, second, from the effect of chance stellar encounters. The forces of the first kind are derivable from a gravitational potential \mathfrak{B} representing the smoothed-out distribution of matter in the șystem. This gravitational potential is a function of the space and time co-ordinates only. On the other hand, the forces of the second kind arise from the accidental encounters with other stars which happen to be in the neighborhood of the star we are considering. More explicitly, the manner in which these two types of forces influence the motion of any particular star can be described as follows: Consider a star which is at the point (x, y, z) at some specified instant of time $t=0$ (say). Without loss of
where $x_{0}=j v_{2}$ and

$$
\begin{equation*}
H\left(x_{0}\right)=\frac{1}{2 x_{0}^{2}}\left[x_{0} \Phi^{\prime}\left(x_{0}\right)+\left(2 x_{0}^{2}-1\right) \Phi\left(x_{0}\right)\right] \tag{2.431}
\end{equation*}
$$

($\Phi\left[x_{0}\right]$ and $\Phi^{\prime}\left[x_{0}\right]$ denote, respectively, the error function and its derivative). The function $H\left(x_{0}\right)$ is tabulated in Table 7. Equation

TABLE 7
$H\left(x_{0}\right)$

x_{0}	$H\left(x_{0}\right)$	T_{D} / T_{E}	x_{0}	$H\left(x_{0}\right)$	T_{D} / T_{E}
0.6	0.421	1.74	1.8	0.849	0.66
0.8	. 534	1.56	2.0	. 876	. 55
1.0	629	1.36	2.5	. 920	0.35
1.2	706	1.16	3.0	. 944	
1.4	766	0.97	4.0	0.969	
1.6	0.813	0.80			

(2.430) can be written in the form

$$
\begin{equation*}
\Sigma \sin ^{2} 2 \Psi=\frac{d^{\prime} t}{\bar{T}_{D}}, \tag{2.432}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{D}=\frac{v_{2}^{3}}{8 \pi N G^{2} m_{1}^{2} H\left(x_{0}\right) \log \left[\frac{D_{0} v_{2}^{2}}{G\left(m_{1}+m_{2}\right)}\right]} . \tag{2.433}
\end{equation*}
$$

Fig. 13.-Vector model for stellar encounters. The fundamental plane is defined by the vectors v_{1} and v_{2} representing the velocities of the two stars before the encounter. The velocity of the center of gravity, denoted by V_{θ}, remains constant during the encounter. In a frame of reference in which the center of gravity is at rest, the two stars describe hyperbolae in the orbital plane, which is, in general, inclined at some definite angle to the fundamental plane. The vectors V and $v_{20,}$ representing respectively the initial relative velocity and the initial velocity of one of the stars with respect to the center of gravity, lie in the orbital plane and are in the same direction. As a result of the encounter, these vectors are deflected by the same angle $\pi-2 \psi_{g}$ and become respectively V^{\prime} and $v_{2 g}^{\prime}$. Finally, $v_{2}^{\prime}=v_{2 g}^{\prime}+v_{\theta}$ defines the velocity of the star at the end of the encounter. The angle $\pi-2 \Psi$ between the vectors v_{2} and v_{2}^{\prime} measures the true deflection suffered by the star as a result of the encounter (Williamson and Chandrasekhar, Ap.J., 93, 309, 1941)

ASTRONOMY AND COSMOGONY

BY
Sir James H. JEANS, M.A., D.Sc., LL.D., F.R.S.
SECRETARY Of the royal society, and research assoclate of mutnt wilson observatory

CAMBRIDGE
AT THE UNIVERSITY PRESS
1929

Pages 317 to 320 contain the derivation by Jeans!

In forming such estimates our unit of time is virtually the interval between one stellar encounter and the next, so that we begin our investigation by considering the frequency of stellar encounters.

The Dynamics of Stellar Encounters.
285. When two stars come so close as to exert appreciable forces on one another each describes a hyperbolic orbit about the centre of gravity of the two. In fig. 52 let S be the centre of gravity of two stars of masses m, m^{\prime}, which are pulling each other appreciably out of their courses, let V_{0} be the velocity of m^{\prime} before the encounter began, and let V be its velocity at the moment of closest approach, both velocities being measured relative to the centre of gravity S. Let p be the perpendicular distance of the undeflected path from S, and let a be the distance at the instant of closest approach.

Fig. 52.
The orbit described by m^{\prime} is that which would be described under a gravitational force $\gamma m^{3} /\left(m+m^{\prime}\right)^{2} r^{2}$ directed towards S. Thus the principles of conservation of energy and momentum supply the relations

$$
\begin{aligned}
V^{2}-V_{0}^{2} & =\frac{2 y m^{3}}{\left(m+m^{\prime}\right)^{2} a} \cdots \cdots \cdots \cdots \cdots \cdots(285 \cdot 1) \\
p V_{0} & =a V \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots(285 \cdot 2) .
\end{aligned}
$$

The elimination of V between these equations gives

$$
\begin{equation*}
p^{2}=a^{2}+\frac{2 \gamma m^{3} a}{\left(m+m^{\prime}\right)^{2} V_{0}^{2}} \tag{285•3}
\end{equation*}
$$

The eccentricity of the orbit, e, is given by

$$
\frac{e+1}{e-1}=\frac{p^{2}}{a^{2}}=1+\frac{2 \gamma m^{3}}{\left(m+m^{\prime}\right)^{2} V_{0}^{2} a}
$$

and as total angle of deflection ψ of either orbit is equal to $2 \operatorname{cosec}^{-1} e$, we obtain

$$
\frac{\sin \frac{1}{2} \psi}{1-\sin \frac{1}{2} \psi}=\frac{\gamma m^{3}}{\left(m+m^{\prime}\right)^{2} V_{0}^{2} a}
$$

This gives the relation between α and ψ; to find the relation between p and ψ we eliminate a between this and equation (285.3) and obtain

$$
\tan \frac{1}{2} \psi=\frac{\gamma m^{3}}{\left(m+m^{\prime}\right)^{2} V_{0}^{2} p}
$$

By differentiation of formula (286.1), we find that there are

$$
\frac{\pi \nu \gamma^{2} m^{6}}{\left(m+m^{\prime}\right)^{4} V_{0}^{3}} \frac{\cos \frac{1}{2} \psi}{\sin ^{3} \frac{1}{2} \psi} d \psi
$$

encounters in unit time which produce a deflection of path between ψ and $\psi+d \psi$. For small deflections, this may be put in the form

$$
\frac{8 \pi \nu \gamma^{2} m^{6}}{\left(m+m^{\prime}\right)^{4} V_{0}^{3}} \frac{d \psi}{\psi^{3}}
$$

The cumulative effect of encounters which produce small deflections $\psi_{1}, \psi_{2}, \ldots$ is to produce a deflection of which the expectation Ψ is given by

$$
\Psi^{2}=\psi_{1}^{2}+\psi_{2}^{2}+
$$

\qquad
Let $\psi_{1}, \psi_{2}, \ldots$ be all the deflections of amount between two limits α and β which occur within a time t. Then, from formula (287•1), we find that

$$
\begin{align*}
\Psi^{2} & =t \int_{\alpha}^{\beta} \frac{8 \pi \nu \gamma^{2} m^{6}}{\left(m+m^{\prime}\right)^{3} V_{0}^{3}} \frac{d \psi}{\psi} \\
& =\frac{8 \pi \nu \gamma^{2} m^{6}}{\left(m+m^{\prime}\right)^{4} V_{0}^{3}} t \log _{e}\left(\frac{\beta}{\alpha}\right) \tag{287•3}
\end{align*}
$$

Let us take the upper limit of deflection to be $\beta=\frac{1}{2} \pi$, thus considering the cumulative effect of deflections less than those considered in § 286. It might at first be thought that to take account of all deflections of amount less than $\frac{1}{2} \pi$, we ought to take $\alpha=0$, but such a procedure would be erroneous for the following reason.

Formula (287.2) is only accurate if the deflections $\psi_{1}, \psi_{2}, \ldots$ are independent, and this requires that they should originate in distinct encounters. If ψ is allowed to become very small, the corresponding distance a of closest approach, as given by equation (285.4), becomes very large, so that there are several stars within a distance α at the same instant, and their effects tend
to neutralise one another. To obtain correct results we must stop off the integration before it brings us to values of a as large as this.

We must accordingly choose the lower limit α so as to correspond to a distance of closest approach which is about equal to the distance between adjacent stars, and so to $\nu^{-\frac{1}{3}}$. By equation (285.4), this value of α is given by

$$
\alpha=\frac{2 \gamma m^{3} \nu^{\frac{1}{3}}}{\left(m+m^{\prime}\right)^{2} V_{0}^{2}}
$$

Assigning this value to α and putting $\beta=\frac{1}{2} \pi$, equation (287.3) becomes

$$
\Psi^{2}=\frac{8 \pi \nu \gamma^{2} m^{6}}{\left(m+m^{\prime}\right)^{4} V_{0}^{3}} \log _{e}\left(\frac{\pi\left(m+m^{\prime}\right)^{2} V_{0}^{2}}{4 \gamma m^{3} \nu^{\frac{1}{3}}}\right) t \ldots \ldots \ldots(287 \cdot 4),
$$

or, inserting the numerical values already mentioned,

$$
\Psi^{2}=\frac{8 \pi \nu \gamma^{2} m^{6}}{\left(m+m^{\prime}\right)^{4} V_{0}^{3}} \times 11.9 t .
$$

The time necessary for deflections less than a right angle to produce a resultant deflection equal to a right angle is obtained by putting $\Psi=\frac{1}{2} \pi$, and is found to be

$$
\begin{equation*}
t=0.026 \frac{\left(m+m^{\prime}\right)^{4} V_{0}^{3}}{\pi \nu \gamma^{2} m^{6}} \text { seconds } \tag{287•5}
\end{equation*}
$$

Comparing with formula (286.3) we see that this time is only about onefortieth of that needed for a single encounter to deflect the path by a right angle. With the values already used it is equal to about 5×10^{13} years.

First appearance of $\ln N$

ON THE DYNAMICS OF OPEN CLUSTERS

(orig.: Uch. Zap. L.G.U. No. 22, p. 19; 1938)

V. A. Ambartsumian

It has already been pointed out in the literature that due to several causes, open star clusters dissipate with time. For instance, Rosseland showed that when external stars move through a cluster, they cause a perturbation of the motion of the stars in the cluster and could transfer enough momentum to individual stars to cause their escape from the cluster's gravitational field. In this way the cluster will lose stars gradually, i.e., it will dissipate. According to Rosseland the time needed for the star cluster to dissipate following the outlined mechanism is 10^{10} years. However, as pointed out by the author of this article in the supplement to the Russian edition of Rosseland's book, there is another factor that makes the life of the open cluster even shorter: the stars in the cluster have close encounters with each other, as a result of which they exchange kinetic energy and gradually tend towards the most probable distribution, i.e., a Maxwell-Boltzmann distribution. And this, as we shall see shortly, also causes the dissipation of the cluster.

The relaxation time, i.e. the time in which the encounters of the stars in the cluster will lead to statistical equilibrium, is given approximately by the formula:

$$
\begin{equation*}
\tau=\frac{3 \sqrt{2}}{32 \pi n} \frac{v^{3}}{G^{2} m^{2} \ln \left(\frac{\rho}{\rho_{0}}\right)}, \tag{1}
\end{equation*}
$$

On the other hand

$$
2 \mathrm{~T}=\mathrm{Nmv}^{2} .
$$

Therefore the virial theorem assumes the form:

$$
\begin{align*}
& \qquad \mathrm{v}^{2}=\frac{\mathrm{GNm}}{2 \rho} . \tag{4}\\
& \text { Comparing (4) with (2), we find that } \\
& \qquad \ln \left(\frac{\rho}{\rho_{0}}\right)=\ln \left(\frac{\mathrm{N}}{4}\right) \text {; } \\
& \text { substituting (4) and (5) in (1) and taking into account that } \\
& \mathrm{n}=\frac{\mathrm{N}}{\frac{4}{3} \pi \rho^{3}},
\end{align*}
$$

[^0]Though the physical ideas were correctly formulated by Jeans and Schwarzschild, a completely rigorous evaluation of the time of relaxation was not available until recently. The analysis in $\$ \$ 2.3$ and 2.4 are, in the main, taken from-
6. S. Chandrasekhar, Ap. J., 93, 285, 1941, and-

SECOND ASPECT OF DIFFUSION IN VELOCITY SPACE

SECOND ASPECT OF DIFFUSION IN VELOCITY SPACE

- This can't be the whole story!

SECOND ASPECT OF DIFFUSION IN VELOCITY SPACE

- This can't be the whole story!
- We need a dynamical friction to reach steady state with Maxwellian distribution of velocities.

SECOND ASPECT OF DIFFUSION IN VELOCITY SPACE

- This can't be the whole story!
- We need a dynamical friction to reach steady state with Maxwellian distribution of velocities.
- Chandra seems to have realized this soon after the publication of the book!!

NEW METHODS IN STELLAR DYNAMICS*

By
 S. Chandrasekhar \dagger

* Awarded an A. Cressy Morrison Prize in Natural Science in 1942 by The New York Academy of Sciences. Publication made possible through a grant from the income of the Ralph Winifred Tower Memorial Fund.
\dagger Yerkes Observatory, Williams Bay, Wisconsin.

$$
\begin{equation*}
-\frac{2}{3} \pi G M n B\left(\frac{\mid F}{Q_{H}}\right)\left(v-3 \frac{v \cdot F}{|F|^{2}} F\right) \tag{54}
\end{equation*}
$$

along any particular direction gives the average value of the rate of change in the force \boldsymbol{F} per unit mass acting on a star that is to be expected in the specified direction, when the star is moving with a velocity v in an appropriately chosen local standard of rest. Stated in this manner, we at once see the essential difference in the stochastic variations of \boldsymbol{F} with time in the two cases $|\boldsymbol{v}|=0$ and $|\boldsymbol{v}| \neq 0$. In the former case, $\overrightarrow{\boldsymbol{F}} \equiv 0$; but this is not generally true when $|\boldsymbol{v}| \neq 0$. Or expressed differently, when $|\boldsymbol{v}|=0$ the changes in \boldsymbol{F} occur with equal probability in all directions, while this is not the case when $|\boldsymbol{v}| \ngtr 0$. The true nature of this difference is brought out very clearly when we consider

$$
\begin{equation*}
\overline{\left(\frac{d|\boldsymbol{F}|}{d t}\right)_{F s}} \tag{55}
\end{equation*}
$$

according to equation (49). Remembering that $B(\beta) \geq 0$ for $\beta \geq 0$, we conclude from equation (49) that

$$
\begin{equation*}
\overline{\left(\frac{d \mid \boldsymbol{F}}{d t}\right)_{F, v}}>0 \text { if } v \cdot F>0 \tag{56}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{\left(\frac{d|\boldsymbol{F}|}{d t}\right)_{F, v}}<0 \text { if } v \cdot \boldsymbol{F}<0 . \tag{57}
\end{equation*}
$$

In other words, if \boldsymbol{F} has a positive component in the direction of $\boldsymbol{v}, \boldsymbol{F}$ increases on the average, while if F has a negative component in the direction of $\boldsymbol{v},|\boldsymbol{F}|$ decreases on the average. This essential asymmetry introduced by the direction of \boldsymbol{v} may be expected to give rise to the phenomenon of dynamical friction.

Brownian Motion, Dynamical Friction, and Stellar Dynamics

S. Chandrasekhar
Yerkes Observalory, University of Chicago, Williams Bay, Wisconsin

loses all trace of its initial state as time progresses. Such a gradual loss of "memory" can be achieved only by the operation of a dissipative force like dynamical friction which will gradually damp out any given initial velocity. Thus, if we assume for the sake of simplicity, that η is independent of $|\mathbf{u}|$, then the average velocity at later times will tend to zero like

$$
\begin{equation*}
\overline{\mathbf{u}}=\mathbf{u}_{0} e^{-n t} ; \tag{38}
\end{equation*}
$$

but this is not to imply that the mean square velocity
also tends to zero. Indeed, the restoration of a Maxwellian distribution of velocities from an arbitrary initial state requires that

$$
\begin{equation*}
\left.\overline{\mathrm{u}} \rightarrow 0 \text { while }\left.\langle | \mathbf{u}\right|^{2}\right\rangle_{k} \rightarrow \mathrm{a} \text { constant as } t \rightarrow \infty . \tag{39}
\end{equation*}
$$

To achieve the first of these conditions we need dynamical friction and to achieve the second we need random fluctuations as expressed by a diffusion coefficient. The recognition of these facts is, of course, Einstein's achievement.

DIFFUSION IN VELOCITY SPACE: A UNIFIED APPROACH

DIFFUSION IN VELOCITY SPACE: A UNIFIED APPROACH

- Diffusion current as the source term:

$$
\frac{d f}{d t}=\frac{\partial f}{\partial t}+\mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{x}}-\nabla \phi \cdot \frac{\partial f}{\partial \mathbf{v}}=-\frac{\partial J^{\alpha}}{\partial p^{\alpha}}
$$

DIFFUSION IN VELOCITY SPACE: A UNIFIED APPROACH

- Diffusion current as the source term:

$$
\frac{d f}{d t}=\frac{\partial f}{\partial t}+\mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{x}}-\nabla \phi \cdot \frac{\partial f}{\partial \mathbf{v}}=-\frac{\partial J^{\alpha}}{\partial p^{\alpha}}
$$

- Form of the current can be shown to be:

$$
J_{\alpha}=\frac{B_{0}}{2} \int d \mathbf{I}^{\prime}\left\{f \frac{\partial f^{\prime}}{\partial l_{\beta}}-f^{\prime} \frac{\partial f}{\partial l_{\beta}}\right\} \cdot\left\{\frac{\delta_{\alpha \beta}}{k}-\frac{k_{\alpha} k_{\beta}}{k^{3}}\right\}
$$

where $B_{0}=4 \pi G^{2} m^{5} L$; and $L=\int_{b_{1}}^{b_{2}} \frac{d b}{b}=\ln \left(\frac{b_{2}}{b_{1}}\right)$

TWO FOR THE PRICE OF ONE!

- Current:

$$
J_{\alpha}=\frac{B_{0}}{2} \int d \mathbf{I}^{\prime}\left\{f \frac{\partial f^{\prime}}{\partial l_{\beta}}-f^{\prime} \frac{\partial f}{\partial l_{\beta}}\right\} \cdot\left\{\frac{\delta_{\alpha \beta}}{k}-\frac{k_{\alpha} k_{\beta}}{k^{3}}\right\}
$$

TWO FOR THE PRICE OF ONE!

- Current:

$$
J_{\alpha}=\frac{B_{0}}{2} \int d \mathbf{I}^{\prime}\left\{f \frac{\partial f^{\prime}}{\partial l_{\beta}}-f^{\prime} \frac{\partial f}{\partial l_{\beta}}\right\} \cdot\left\{\frac{\delta_{\alpha \beta}}{k}-\frac{k_{\alpha} k_{\beta}}{k^{3}}\right\}
$$

- The term proportional to f gives dynamical friction. The term proportional to $\left(\partial f / \partial l_{\beta}\right)$ increases the velocity dispersion.

TWO FOR THE PRICE OF ONE!

- Current:

$$
J_{\alpha}=\frac{B_{0}}{2} \int d \mathbf{I}^{\prime}\left\{f \frac{\partial f^{\prime}}{\partial l_{\beta}}-f^{\prime} \frac{\partial f}{\partial l_{\beta}}\right\} \cdot\left\{\frac{\delta_{\alpha \beta}}{k}-\frac{k_{\alpha} k_{\beta}}{k^{3}}\right\}
$$

- The term proportional to f gives dynamical friction. The term proportional to $\left(\partial f / \partial l_{\beta}\right)$ increases the velocity dispersion.
- The current J_{α} vanishes for Maxwell distribution, as it should!

AN ILLUSTRATIVE TOY MODEL

AN ILLUSTRATIVE TOY MODEL

- Note that

$$
J_{\alpha}(l) \equiv a_{\alpha}(\mathbf{l}) f(\mathbf{l})-\frac{1}{2} \frac{\partial}{\partial l_{\beta}}\left\{\sigma_{\alpha \beta}^{2} f\right\}
$$

where $a_{\alpha}=\left(\partial \eta / \partial l_{\alpha}\right), \sigma_{\alpha \beta}^{2}=\left(\partial^{2} \psi / \partial l_{\alpha} \partial l_{\beta}\right)$

AN ILLUSTRATIVE TOY MODEL

- Note that

$$
J_{\alpha}(l) \equiv a_{\alpha}(\mathbf{l}) f(\mathbf{l})-\frac{1}{2} \frac{\partial}{\partial l_{\beta}}\left\{\sigma_{\alpha \beta}^{2} f\right\}
$$

where $a_{\alpha}=\left(\partial \eta / \partial l_{\alpha}\right), \sigma_{\alpha \beta}^{2}=\left(\partial^{2} \psi / \partial l_{\alpha} \partial l_{\beta}\right)$

- Aside:

$$
\nabla^{2} \psi=\eta ; \quad \nabla_{l}^{2} \eta(\mathbf{l})=\nabla_{l}^{2}\left\{2 \int d \mathbf{l}^{\prime} \frac{f\left(\mathbf{l}^{\prime}\right)}{\left|\mathbf{l}-\mathbf{l}^{\prime}\right|}\right\}=-8 \pi f(\mathbf{l})
$$

AN ILLUSTRATIVE TOY MODEL

- Note that

$$
J_{\alpha}(l) \equiv a_{\alpha}(\mathbf{l}) f(\mathbf{l})-\frac{1}{2} \frac{\partial}{\partial l_{\beta}}\left\{\sigma_{\alpha \beta}^{2} f\right\}
$$

where $a_{\alpha}=\left(\partial \eta / \partial l_{\alpha}\right), \sigma_{\alpha \beta}^{2}=\left(\partial^{2} \psi / \partial l_{\alpha} \partial l_{\beta}\right)$

- Aside:

$$
\nabla^{2} \psi=\eta ; \quad \nabla_{l}^{2} \eta(\mathbf{l})=\nabla_{l}^{2}\left\{2 \int d \mathbf{l}^{\prime} \frac{f\left(\mathbf{l}^{\prime}\right)}{\left|\mathbf{l}-\mathbf{l}^{\prime}\right|}\right\}=-8 \pi f(\mathbf{l})
$$

- Treat the coefficients as constants to understand the structure of the equation:

$$
\frac{\partial f(v, t)}{\partial t}=\frac{\partial}{\partial v}\left\{(\alpha v) f+\frac{\sigma^{2}}{2} \frac{\partial f}{\partial v}\right\} \equiv-\frac{\partial J}{\partial v}
$$

AN ILLUSTRATIVE TOY MODEL

- Note that

$$
J_{\alpha}(l) \equiv a_{\alpha}(\mathbf{l}) f(\mathbf{l})-\frac{1}{2} \frac{\partial}{\partial l_{\beta}}\left\{\sigma_{\alpha \beta}^{2} f\right\}
$$

where $a_{\alpha}=\left(\partial \eta / \partial l_{\alpha}\right), \sigma_{\alpha \beta}^{2}=\left(\partial^{2} \psi / \partial l_{\alpha} \partial l_{\beta}\right)$

- Aside:

$$
\nabla^{2} \psi=\eta ; \quad \nabla_{l}^{2} \eta(\mathbf{l})=\nabla_{l}^{2}\left\{2 \int d \mathbf{l}^{\prime} \frac{f\left(\mathbf{l}^{\prime}\right)}{\left|\mathbf{l}-\mathbf{l}^{\prime}\right|}\right\}=-8 \pi f(\mathbf{l})
$$

- Treat the coefficients as constants to understand the structure of the equation:

$$
\frac{\partial f(v, t)}{\partial t}=\frac{\partial}{\partial v}\left\{(\alpha v) f+\frac{\sigma^{2}}{2} \frac{\partial f}{\partial v}\right\} \equiv-\frac{\partial J}{\partial v}
$$

- An initial distribution $f(v, 0)=\delta_{D}\left(v-v_{0}\right)$ evolves to:

$$
f(v, t)=\left[\frac{\alpha}{\pi \sigma^{2}\left(1-\mathrm{e}^{-2 \alpha t}\right)}\right]^{1 / 2} \exp \left[-\frac{\alpha\left(v-v_{0} \mathrm{e}^{-\alpha t}\right)^{2}}{\sigma^{2}\left(1-\mathrm{e}^{-2 \alpha t}\right)}\right]
$$

- The mean velocity decays to zero:

$$
<v>=v_{0} \mathrm{e}^{-\alpha t}
$$

- The mean velocity decays to zero:

$$
<v>=v_{0} \mathrm{e}^{-\alpha t}
$$

- The distribution tends to Maxwellian limit with velocity dispersion

$$
<v^{2}>-<v>^{2}=\frac{\sigma^{2}}{\alpha}\left(1-\mathrm{e}^{-2 \alpha t}\right) \rightarrow \frac{\sigma^{2}}{\alpha}
$$

- The mean velocity decays to zero:

$$
\langle v\rangle=v_{0} \mathrm{e}^{-\alpha t}
$$

- The distribution tends to Maxwellian limit with velocity dispersion

$$
<v^{2}>-<v>^{2}=\frac{\sigma^{2}}{\alpha}\left(1-\mathrm{e}^{-2 \alpha t}\right) \rightarrow \frac{\sigma^{2}}{\alpha}
$$

- The interplay between the two effects is obvious.

```
HISTORY: OVERLOOKING LANDAU (1936)!
```


DIE KINETISCHE GLEICHUNG FUR DEN FALL COULOMBSCHER WECHSELWIRKUNG.

```
Von L. L \(u d a u\).
(Eingegan an i. Juni 1936.)
Bs wird die linetische folchung fur die aus geladenen Teilchen bestehenden Systeme unter Bericicsichtigung threr Wechselwirkang abgeleitet. Dle Grössenordnung der freien Weglange dieser Tellchen wird bestimmt, sowie die Geschwindigkeit des Temperaturauggleiches von loner und Elektronen im Plasma.
```

De kinetisehe Gletchung für den Rall Coulonbscher Wechselwirlung. 161
Wenn wir diesen Ausdruck in (3) einsetzen, finden wir für den Strom der Tellchen e 1 m Impularaum endgultig:

$$
j=\pi c^{2} L v^{2} \int\left\{n \frac{\partial n^{2}}{\partial p_{k}}-n^{\prime} \frac{\partial n}{\partial p_{k}}\right\} \frac{w^{*} w_{n k}-u_{i} w_{k}}{u^{8}} d \tau^{\prime} . \quad \text { (7) }
$$

HISTORY: OVERLOOKING LANDAU (1936)!

The Electrical Conductivity of an Ionized Gas*

Robert S. Cohen**

Sloane Physics Laboratory, Yale University, New Haven, Connecticut
AND
Lyman Spitzer, Jr., and Paul McR. Routly
Princeton University Observatory, Princeton, New Jersey
(Received April 3, 1950)
bution function is affected primarily by the many small deflections produced by relatively distant encounters. There will be many such encounters during the time a particle travels over its mean free path, and the change in the particle velocity can be computed in the same way as is the change of the position of a particle in

[^1]
I. GENERAL PRINCIPLES

The velocity distribution function f_{r} for particles of type r, interacting with particles of different types s, is determined by Boltzmann's equation (reference 1, Eq. (8.1 $\left.1_{1}\right)$

$$
\begin{equation*}
\frac{\partial f_{r}}{\partial t}+\sum_{i} \theta_{r i} \frac{\partial f_{r}}{\partial x_{i}}+\sum_{i} F_{r r} \frac{\partial f_{r}}{\partial v_{r i}}=\sum_{s}\left(\frac{\partial_{e} f_{r}}{\partial t}\right)_{s}, \tag{1}
\end{equation*}
$$

where the notation is similar to that used by Chapman
${ }^{5}$ L. Landau, Physik Zeits. Sowjetunion 10, 154 (1936). In this reference, the important terms representing dynamical friction, which should appear in the diffusion equation, are set equal to zero as a result of certain approximations.

THE

Physical Review

CA journal of experimental and theoretical physics established by E. L. Nichols in 1893

Second Series, Vol. 107, No. 1	JULY 1, 1957

Fokker-Planck Equation for an Inverse-Square Force*
Marshall N. Rosenbluth, \dagger Whliam M. MacDonald, $\dagger \dagger$ and David L. Judd Radiation Laboratory, University of California, Berkeley, California
(Received August 31, 1956)
malism of this equation to evaluate the collision terms of the Boltzmann equation under the assumptions that (a) the events producing changes in particle momenta
*This work was done under the auspices of the U. S. Atomic Energy Commission.
\dagger Present address: General Atomic, San Diego, California.
t \dagger Present address: Physics Department, University of Maryland, College Park, Maryland.
${ }^{1}$ S. Chapman and T. G. Cowling, Mathematical Theory of Non-
Uniform Gases (Cambridge University Press, London, 1952),
Uniform Gases (Cambridge University Press, London, 1952), second edition, pp. 178-179.
${ }_{2}$ S. Chandrasekhar, Revs. Modern Phys. 15, 1 (1943).

II. FORMULATION OF THE PROBLEM

The Boltamann equation for the change of the molecular distribution function is given by

$$
\begin{equation*}
\frac{\partial f_{a}}{\partial t}+v^{\mu} \frac{\partial f_{a}}{\partial x^{\mu}}+\frac{F^{\mu}}{m} \frac{\partial f_{a}}{\partial v^{\mu}}=\left(\frac{\partial f_{a}}{\partial t}\right)_{c} \tag{1}
\end{equation*}
$$

${ }^{3}$ Cohen, Spitzer, and McRoutly, Phys. Rev. 80, 230 (1950). A more complete list of references is given in this paper. ${ }^{4}$ L. Spitzer and R. Harm, Phys. Rev. 89, 977 (1953).

THE UNIVERSITY OF CHICAGO
 THE ENRICO FERMI INSTITUTE
 933 EAST 56 TH STREET
 CHICAGO • ILLINOIS 60637
 TELEPHONE (312) 702-7860

Laboratory for Astrophysics and Space Research

September 12, 1989

Dr. T. Padmanabhan
Theoretical Astrophysics Group
Tat Institute of Fundamental Research
Homi Bhabha Road
BOMBAY 400 005, INDIA
Dear Dr. Padmanabhan,
Thank you for your letter of August 23 enclosing a copy of your preprint "Statistical mechanics of gravitating systems." While I appreciate your courtesy in sending me this preprint, it relates to matters that I was interested in, some forty and more years ago. And I am afraid that my present remembrance is faded.

It is possible that I may visit the Inter-University Center for Astronomy and Astrophysics in Poona on a date in December (not certain yet). Perhaps I may have a chance to see you on that occasion.

Yours sincerely,

S. Chandrasekhar

GRAVITATIONAL CLUSTERING IN EXPANDING UNIVERSE

- SOME KEY ISSUES -

GRAVITATIONAL CLUSTERING IN EXPANDING UNIVERSE

 - SOME KEY ISSUES -- If the initial power spectrum is sharply peaked in a narrow band of wavelengths, how does the evolution transfer the power to other scales?

GRAVITATIONAL CLUSTERING IN EXPANDING UNIVERSE

 - SOME KEY ISSUES -- If the initial power spectrum is sharply peaked in a narrow band of wavelengths, how does the evolution transfer the power to other scales?
- What is the asymptotic nature of evolution for the self gravitating system in an expanding background?

GRAVITATIONAL CLUSTERING IN EXPANDING UNIVERSE

 - SOME KEY ISSUES -- If the initial power spectrum is sharply peaked in a narrow band of wavelengths, how does the evolution transfer the power to other scales?
- What is the asymptotic nature of evolution for the self gravitating system in an expanding background?
- Does the gravitational clustering at late stages wipe out the memory of initial conditions?

GRAVITATIONAL CLUSTERING IN EXPANDING UNIVERSE

 - SOME KEY ISSUES -- If the initial power spectrum is sharply peaked in a narrow band of wavelengths, how does the evolution transfer the power to other scales?
- What is the asymptotic nature of evolution for the self gravitating system in an expanding background?
- Does the gravitational clustering at late stages wipe out the memory of initial conditions ?
- Do the virialized structures formed in an expanding universe due to gravitational clustering have any invariant properties? Can their structure be understood from first principles?

GRAVITATIONAL CLUSTERING IN EXPANDING UNIVERSE

 - SOME KEY ISSUES -- If the initial power spectrum is sharply peaked in a narrow band of wavelengths, how does the evolution transfer the power to other scales?
- What is the asymptotic nature of evolution for the self gravitating system in an expanding background?
- Does the gravitational clustering at late stages wipe out the memory of initial conditions ?
- Do the virialized structures formed in an expanding universe due to gravitational clustering have any invariant properties? Can their structure be understood from first principles?
- How can one connect up the local behaviour of gravitating systems to the evolution of clustering in the universe?

BASIC DEFINITIONS

- Density:

$$
\rho(\mathbf{x}, t)=\frac{m}{a^{3}(t)} \sum_{i} \delta_{D}\left[\mathbf{x}-\mathbf{x}_{i}(t)\right]
$$

- Mean density:

$$
\rho_{b}(t) \equiv \int \frac{d^{3} \mathbf{x}}{V} \rho(\mathbf{x}, t)=\frac{m}{a^{3}(t)}\left(\frac{N}{V}\right)=\frac{M}{a^{3} V}=\frac{\rho_{0}}{a^{3}}
$$

- Density contrast:

$$
1+\delta(\mathbf{x}, t) \equiv \frac{\rho(\mathbf{x}, t)}{\rho_{b}}=\frac{V}{N} \sum_{i} \delta_{D}\left[\mathbf{x}-\mathbf{x}_{i}(t)\right]=\int d \mathbf{q} \delta_{D}\left[\mathbf{x}-\mathbf{x}_{T}(t, \mathbf{q})\right]
$$

- Density contrast in Fourier space:

$$
\delta_{\mathbf{k}}(t) \equiv \int d^{3} \mathbf{x} \mathrm{e}^{-i \mathbf{k} \cdot \mathbf{x}} \delta(\mathbf{x}, t)=\int d^{3} \mathbf{q} \exp \left[-i \mathbf{k} \cdot \mathbf{x}_{T}(t, \mathbf{q})\right]-(2 \pi)^{3} \delta_{D}(\mathbf{k})
$$

- Density contrast in Fourier space satisfies:

$$
\ddot{\delta}_{\mathbf{k}}+2 \frac{\dot{a}}{a} \dot{\delta}_{\mathbf{k}}=4 \pi G \rho_{b} \delta_{\mathbf{k}}+A_{\mathbf{k}}-B_{\mathbf{k}}
$$

with

$$
\begin{aligned}
A_{\mathbf{k}} & =4 \pi G \rho_{b} \int \frac{d^{3} \mathbf{k}^{\prime}}{(2 \pi)^{3}} \delta_{\mathbf{k}^{\prime}} \delta_{\mathbf{k}-\mathbf{k}^{\prime}}\left[\frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{k^{\prime 2}}\right] \\
B_{\mathbf{k}} & =\int d^{3} \mathbf{q}\left(\mathbf{k} \cdot \dot{\mathbf{x}}_{T}\right)^{2} \exp \left[-i \mathbf{k} \cdot \mathbf{x}_{T}(t, \mathbf{q})\right]
\end{aligned}
$$

- Density contrast in Fourier space satisfies:

$$
\ddot{\delta}_{\mathbf{k}}+2 \frac{\dot{a}}{a} \dot{\delta}_{\mathbf{k}}=4 \pi G \rho_{b} \delta_{\mathbf{k}}+A_{\mathbf{k}}-B_{\mathbf{k}}
$$

with

$$
\begin{aligned}
A_{\mathbf{k}} & =4 \pi G \rho_{b} \int \frac{d^{3} \mathbf{k}^{\prime}}{(2 \pi)^{3}} \delta_{\mathbf{k}^{\prime}} \delta_{\mathbf{k}-\mathbf{k}^{\prime}}\left[\frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{k^{\prime 2}}\right] \\
B_{\mathbf{k}} & =\int d^{3} \mathbf{q}\left(\mathbf{k} \cdot \dot{\mathbf{x}}_{T}\right)^{2} \exp \left[-i \mathbf{k} \cdot \mathbf{x}_{T}(t, \mathbf{q})\right]
\end{aligned}
$$

- Coupled exact equations:

$$
\begin{aligned}
\ddot{\phi}_{\mathbf{k}}+4 \frac{\dot{a}}{a} \dot{\phi}_{\mathbf{k}} & =-\frac{1}{2 a^{2}} \int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \phi_{\frac{1}{2} \mathbf{k}+\mathbf{p}} \phi_{\frac{1}{2} \mathbf{k}-\mathbf{p}}\left[\left(\frac{k}{2}\right)^{2}+p^{2}-2\left(\frac{\mathbf{k} \cdot \mathbf{p}}{k}\right)^{2}\right] \\
& +\left(\frac{3 H_{0}^{2}}{2}\right) \int \frac{d^{3} \mathbf{q}}{a}\left(\frac{\mathbf{k} \cdot \dot{\mathbf{x}}}{k}\right)^{2} e^{i \mathbf{k} \cdot \mathbf{x}} \\
\ddot{\mathbf{x}} & +2 \frac{\dot{a}}{a} \dot{\mathbf{x}}=-\frac{1}{a^{2}} \nabla_{x} \phi=-\frac{1}{a^{2}} \int i \mathbf{k} \phi_{\mathbf{k}} \exp i(\mathbf{k} \cdot \mathbf{x})
\end{aligned}
$$

"Renormalizability" of gravity

"Renormalizability" of gravity

- One can then show that: The term $\left(A_{\mathbf{k}}-B_{\mathbf{k}}\right)$ receives contribution only from particles which are not bound to any of the clusters to the order $\mathcal{O}\left(k^{2} R^{2}\right)$.

"Renormalizability" of gravity

- One can then show that: The term $\left(A_{\mathbf{k}}-B_{\mathbf{k}}\right)$ receives contribution only from particles which are not bound to any of the clusters to the order $\mathcal{O}\left(k^{2} R^{2}\right)$.
(Peebles, 1980)
- Allows one to ignore contributions from virialised systems and treat the rest in Zeldovich (-like) approximation. Then one gets:

$$
\begin{align*}
H_{0}^{2}\left(a \frac{d^{2}}{d a^{2}}+\frac{7}{2} \frac{d}{d a}\right) \phi_{\mathbf{k}}= & -\frac{2}{3} \int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \phi_{\frac{1}{2} \mathbf{k}+\mathbf{p}}^{L} \phi_{\frac{1}{2} \mathbf{k}-\mathbf{p}}^{L}\left[\left(\frac{k}{2}\right)^{2}-\left(\frac{\mathbf{k} \cdot \mathbf{p}}{k}\right)^{2}\right] \\
& -\frac{1}{2} \int^{\prime} \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \phi_{\frac{1}{2} \mathbf{k}+\mathbf{p}} \phi_{\frac{1}{2} \mathbf{k}-\mathbf{p}}\left[\left(\frac{k}{2}\right)^{2}+p^{2}-2\left(\frac{\mathbf{k} \cdot \mathbf{p}}{k}\right)^{2}\right] \tag{T.P,2002}
\end{align*}
$$

Evolution at large scales

Evolution at large scales

- Ignore the terms $A_{\mathbf{k}}$ and $B_{\mathbf{k}}$. Then:

$$
\ddot{\delta}_{\mathbf{k}}+2 \frac{\dot{a}}{a} \dot{\delta}_{\mathbf{k}}=4 \pi G \rho_{b} \delta_{\mathbf{k}}
$$

Evolution at large scales

- Ignore the terms $A_{\mathbf{k}}$ and $B_{\mathbf{k}}$. Then:

$$
\ddot{\delta}_{\mathbf{k}}+2 \frac{\dot{a}}{a} \dot{\delta}_{\mathbf{k}}=4 \pi G \rho_{b} \delta_{\mathbf{k}}
$$

- For $a \propto t^{2 / 3}, \rho_{b} \propto a^{-3}$, the growing solution is:

$$
\delta_{k} \propto a ; \quad P(k)=\left|\delta_{k}\right|^{2} \propto a^{2} ; \quad \xi(a, x) \propto a^{2}
$$

Evolution at large scales

- Ignore the terms $A_{\mathbf{k}}$ and $B_{\mathbf{k}}$. Then:

$$
\ddot{\delta}_{\mathbf{k}}+2 \frac{\dot{a}}{a} \dot{\delta}_{\mathbf{k}}=4 \pi G \rho_{b} \delta_{\mathbf{k}}
$$

- For $a \propto t^{2 / 3}, \rho_{b} \propto a^{-3}$, the growing solution is:

$$
\delta_{k} \propto a ; \quad P(k)=\left|\delta_{k}\right|^{2} \propto a^{2} ; \quad \xi(a, x) \propto a^{2}
$$

- BUT: If $\delta_{\mathbf{k}} \rightarrow 0$ for certain range of \mathbf{k} at $t=t_{0}$ (but is nonzero elsewhere) then $\left(A_{\mathbf{k}}-B_{\mathbf{k}}\right) \gg 4 \pi G \rho_{b} \delta_{\mathbf{k}}$ and the growth of perturbations around \mathbf{k} will be entirely determined by nonlinear effects.

Evolution at large scales

- Ignore the terms $A_{\mathbf{k}}$ and $B_{\mathbf{k}}$. Then:

$$
\ddot{\delta}_{\mathbf{k}}+2 \frac{\dot{a}}{a} \dot{\delta}_{\mathbf{k}}=4 \pi G \rho_{b} \delta_{\mathbf{k}}
$$

- For $a \propto t^{2 / 3}, \rho_{b} \propto a^{-3}$, the growing solution is:

$$
\delta_{k} \propto a ; \quad P(k)=\left|\delta_{k}\right|^{2} \propto a^{2} ; \quad \xi(a, x) \propto a^{2}
$$

- BUT: If $\delta_{\mathbf{k}} \rightarrow 0$ for certain range of \mathbf{k} at $t=t_{0}$ (but is nonzero elsewhere) then $\left(A_{\mathbf{k}}-B_{\mathbf{k}}\right) \gg 4 \pi G \rho_{b} \delta_{\mathbf{k}}$ and the growth of perturbations around \mathbf{k} will be entirely determined by nonlinear effects.
- There is inverse cascade of power in gravitational clustering!

Bagla, T.P, (1997) MNRAS, 286, 1023

$$
\frac{k^{3} \mathrm{P}(\mathrm{k})}{\mathrm{a}^{2}}{ }^{\mathrm{L}}
$$

‘EQUIPARTITION' OF ENERGY FLOW

‘EQUIPARTITION' OF ENERGY FLOW

- If the local power law index is n, then one can show that in the linear regime:

$$
E_{L}(a, x) \approx a x^{-(n+2)}
$$

‘EQUIPARTITION' OF ENERGY FLOW

- If the local power law index is n, then one can show that in the linear regime:

$$
E_{L}(a, x) \approx a x^{-(n+2)}
$$

- In the quasilinear regime:

$$
E_{Q L}(a, x) \approx a^{\frac{2-n}{n+4}} x^{-\frac{2 n+5}{n+4}}
$$

‘EQUIPARTITION' OF ENERGY FLOW

- If the local power law index is n, then one can show that in the linear regime:

$$
E_{L}(a, x) \approx a x^{-(n+2)}
$$

- In the quasilinear regime:

$$
E_{Q L}(a, x) \approx a^{\frac{2-n}{n+4}} x^{-\frac{2 n+5}{n+4}}
$$

- In the nonlinear regime:

$$
E_{N L}(a, x) \approx a^{\frac{1-n}{n+5}} x^{-\frac{2 n+4}{n+5}}
$$

‘EQUIPARTITION' OF ENERGY FLOW

- If the local power law index is n, then one can show that in the linear regime:

$$
E_{L}(a, x) \approx a x^{-(n+2)}
$$

- In the quasilinear regime:

$$
E_{Q L}(a, x) \approx a^{\frac{2-n}{n+4}} x^{-\frac{2 n+5}{n+4}}
$$

- In the nonlinear regime:

$$
E_{N L}(a, x) \approx a^{\frac{1-n}{n+5}} x^{-\frac{2 n+4}{n+5}}
$$

- NEW FEATURE: The energy flow is form invariant ("equipartition") when $n=-1$ in QL and $n=-2$ in the NL regimes! Then $E \propto a$ in all three regimes.

Bagla, T.P, (1997) MNRAS, 286, 1023

Bagla, T.P, (1997) MNRAS, 286, 1023

Summary

Summary

- Chandra pioneered the use of statistical physics in the study of gravitating systems.

Summary

- Chandra pioneered the use of statistical physics in the study of gravitating systems.
- His approach to this subject shows the characteristic rigour employed as a matter of policy rather than out of necessity.

Summary

- Chandra pioneered the use of statistical physics in the study of gravitating systems.
- His approach to this subject shows the characteristic rigour employed as a matter of policy rather than out of necessity.
- The subject is alive and well and still has several open questions especially in the context of cosmology.

Acknowledgements

- D. Lynden-Bell (IOA)
- D. Narasimha (TIFR)
- R. Nityananda (NCRA)
- S. Sridhar (RRI)
- K. Subramanian (IUCAA)

[^0]: © International Astronomical Union • Provided by the NASA Astrophysics Data System

[^1]: * This work has been supported in part by the ONR.
 ** National Research Council Predoctoral Fellow (1946-48); now with the Department of Philosophy, Yale University. This material was submitted in part to Yale University in partial fulfillment of the requirements for a Ph.D. degree.
 ${ }^{1}$ S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, London, 1939).
 ${ }^{2}$ T. G. Cowling, Proc. Roy. Soc. A, 183, 453 (1945).
 ${ }^{3}$ R. Landshoff, Phys. Rev. 76, 904 (1949).
 ${ }^{4}$ S. Chandrasekhar, Astrophys. J. 97, 255, 263 (1943).

