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Theories of Iroshnikov (1963), Kraichnan (1965)

Interstellar Scintillation data (since 1968) does 
not agree with IK theory

New theories in the 1990s -> applications in 
many areas of astrophysics

In situ spacecraft measurements of Solar Wind 
Turbulence -> generalizations in the 2000s



MHD Turbulence 

Strong background magnetic field: turbulence due 
to nonlinear interactions between oppositely directed 
Alfven waves

Alfven wave turbulence

Highly anisotropic 

Weak or strong 

Balanced or imbalanced



Alfven waves (incompressible fluid)

Mean magnetic field

Both      and       are parallel to                       
(slow waves are the other orthogonal component)

Up waves                          Down waves

B = B0ẑ

δv δB k× ẑ

δv = − δB√
4πρ

δv = +
δB√
4πρ

ω+(k) = +VA kz ω−(k) = −VA kz

VA =
B0√
4πρ

; Alfven speed



Elsasser fields

Nonlinear Waves: when either      or       is   , the 
nonlinear terms vanish.                                      
Exact solutions: 

Up waves:

Down waves:

w± = δv ∓ δB√
4πρ

w+ = f+(x, y, z − VAt) , w− = 0

w− = f−(x, y, z + VAt) , w+ = 0

w−w+ 0



Processes underlying MHD Turbulence

MHD Turbulence is the result of nonlinear interactions 
between oppositely directed Alfven wavepackets   
Iroshnikov (1963), Kraichnan (1965)

Energy conservation:

No exchange between       and 

Collisions only lead to a redistribution of energies 
over different length scales

E± =

� |w±|2

2
d3x ; Elsasser energies

E+ E−



Iroshnikov-Kraichnan theory

Iroshnikov (1963), Kraichnan (1965)

Balanced isotropic excitation of +ve and -ve waves                               
on length scale        and rms amplitudes

Assume isotropy on all scales

Each collision perturbs a wavepacket weakly: 

∼ L

λ < L

wL < VA

δwλ ∼ w2
λ

VA



Successive collisions add with random phases. 
The number of collisions for perturbations to 
build up to order unity is

The cascade time is 

The   -independence of

Nλ ∼
�
VA

wλ

�2

tλ ∼ Nλ
λ

VA

ε ∼ w2
λ

tλ

λ



implies that in the inertial-range

Can check that

So the IK theory seems self-consistent

wλ ∼ wL

�
λ

L

�1/4

Nλ ∝ λ−1/2



Interstellar Scintillation





Interstellar Turbulence

Electron density fluctuations follow a Kolmogorov 
spectrum

If these result from mixing by a turbulent velocity 
field, then the velocity fluctuations must follow a 
Kolmogorov spectrum 

But hydrodynamic turbulence has a large inner scale!

MHD turbulence? Higdon (1984)

But the IK theory predicts a flatter spectrum!



Problems with the IK theory

The IK theory fails because of the neglect of the   
3-wave resonance conditions

One of       or       must be zero               
Shebalin, Matthaeus & Montgomery (1983)                                    

Hence waves with values of       not present initially 
cannot be created during wavepacket collisions

k1 + k2 = k3 , ω±
1 + ω∓

2 = ω±
3

where ω±
k = ±VAkz

k1z k2z

kz



No parallel cascade

Weak MHD turbulence must be anisotropic

Balanced weak 3-wave turbulence                     
Ng & Bhattacharjee (1996),   Goldreich & SS (1997):

 Theory must break down when Nλ ∼ 1

Parallel scale ∼ L , Transverse scale ∼ λ

wλ ∝ λ1/2 , Nλ ∝ λ



Balanced Strong MHD Turbulence  
Goldreich & SS (1995)

Critical Balance:             is independent of  

Cascade time is equal to the wave period 

Resonance conditions do not hold

Parallel length scales can change:          

tλ ∼ λ

wλ
∼ Λλ

VA

Λλ

Nλ ∼ 1 λ



The   -independence of                 leads to the 
anisotropic Kolmogorov spectrum

Parallel Cascade

wλ ∼ wL

�
λ

L

�1/3

Λλ ∼ VA

wL
L1/3λ2/3

ε ∼ w2
λ/tλλ



Theory non perturbative; phenomenological

Many applications: accretion discs, cosmic rays... 

Many outstanding problems in Interstellar Turbulence

Correlations between DM and SM

Steep spectra? Discrete structures?

Extreme scattering events

What are the sources and sites?

But Interstellar Scintillation is not a direct probe!

Comments



In situ spacecraft measurements since the 1960s

Fast solar wind:  speed                   

Slow solar wind: speed                 

Fast wind more uniform and steady

Solar minimum

High latitudes

Ulysses spacecraft (October 1990 - June 2009)

Solar Wind Turbulence

∼ 750 km s−1

∼ 350 km s−1



Spacecraft measurements

Spacecraft time series is a straight line cut which is 
like a snapshot of the solar wind plasma

Taylor’s hypothesis: 

Reduced spectrum

Full recovery possible if 3-dim spectrum is isotropic

Balanced strong MHD turbulence

P red
ij (f) ∝






f−5/3 if V ⊥ B

f−2 if V�B

P red
ij (f) =

�
d3k δ(k · V̂ − k0)Pij(k)

k0 =
2πf

V



Alfven waves (Belcher & Davis 1971)

In both cases the Alfven waves are outward-bound

Spacecraft observations of solar wind turbulence B707

Figure 1. Variations in the components of the velocity (——) and magnetic field (——) during two
days of data taken within high speed solar wind streams. Depending on the polarity of the ambient
magnetic field, the field and velocity variations are either correlated or anti-correlated, indicating
the presence of Alfvén waves.

directed away from the Sun. In both the cases, therefore, the waves were propagating anti-
sunwards in the plasma frame. This is the dominant behaviour in high speed solar wind streams,
and is consistent with these fluctuations originating in the corona below the Alfvén critical
point. Any inwardly-propagating waves generated below this point will travel towards the Sun,
while outwardly-propagating waves will travel into the solar wind. Above the critical point,
however, inwardly-propagating waves will be swept away from the Sun by the faster moving
solar wind plasma. The dominance of outwardly-propagating waves, therefore, suggests that
the Alfvénic fluctuations on these scales were generated in the Sun’s corona and any inwardly-
propagating waves travelled sunwards, which is why they are not present in the solar wind.
Indeed, these Alfvén waves in the solar wind may be remnants of fluctuations which are
partially responsible for heating the corona.

4.2. Active turbulent cascade

We have established that much of the solar wind, at least within high speed solar wind streams,
is filled with Alfvénic fluctuations. As we saw in section 4.1, the predominantly anti-sunward
sense of propagation of these fluctuations is consistent with them being generated close to
the Sun, in the corona. However, not all fluctuations in the solar wind are simply remnants
of processes in the corona, carried out unaffected into the heliosphere. Instead, there is an
active turbulent cascade of energy between scales. Perhaps the best evidence of this cascade
is provided by examining the power spectrum of solar wind fluctuations.

A typical magnetic field power spectrum is shown in figure 2. Recall that, as discussed in
section 3, the spacecraft frame frequency power spectrum is essentially a plasma frame spatial
(albeit reduced) spectrum, so one should be careful not to interpret frequencies as being in the
plasma frame. The spectrum reveals broadband fluctuations over all measured scales, but with
two distinct domains in frequency each with power law variations of power with scale: one,
at low frequencies (large scales) with a spectral index near 1 (i.e. P(f ) ∝ f −1) and one at
higher frequencies with a spectral index near 5/3. The highly Alfvénic fluctuations in figure 1

w− waves w+ waves



Polarization:      and       perpendicular to         
Spatial variation: mostly transverse to

  SS 

Wicks et al (2010): consistent with GS95 theory

L2 R. T. Wicks et al.

2 WAV E L E T S A N D T H E LO C A L M E A N
MAGNETIC F IEL D

We use the method devised by Horbury et al. (2008) and detailed by
Podesta (2009). The Morlet wavelet is used to obtain the power in
magnetic field fluctuations as a function of both frequency and time.
Neighbouring wavelet scales differ by a factor of 1.6, approximately
the uncertainty on the frequency resolution of the Morlet wavelet;
this ensures coverage of frequency without oversampling (Torrence
& Compo 1998). The scale of the wavelet envelope function (a
Gaussian) is used as the length over which to calculate the mean
magnetic field direction (Horbury et al. 2008). This results in a
mean field local to the fluctuation and not the larger scale field often
considered in other studies (e.g. Tessein et al. 2009). The power
calculated using the wavelet is then assigned to a bin corresponding
to an angle θB between the local field and the radial direction (the
solar wind flows radially past the spacecraft) and a Fourier frequency
f associated with the wavelet scale, giving P (f , θB). We adopt the
Taylor hypothesis (Taylor 1938): when the flow speed is much
greater than the sound and Alfvén speeds, a time series can be
considered to be a 1D cut through a time stationary plasma. We take
periods of Ulysses data from 1995, when the spacecraft was in fast
polar solar wind. We use 1-s resolution Ulysses magnetic field data
(Balogh et al. 1992); data gaps are linearly interpolated but are rare,
accounting for approximately 6 per cent of the data. Analysing each
period produces a power spectrum ranging in spacecraft frequency
f between 3.3 × 10−5 and 2.5 × 10−1 Hz. We resolve θB in 10◦ bins
between 0◦ and 90◦. For all of the periods studied here, the global
average Parker field points away from the Sun with an angle between
20◦ and 45◦ to the radial direction. At the highest frequencies there
are ∼104 power measurements in each (f , θB) bin. At the lowest
frequencies, θB tends to the angle expected from the Parker spiral
and bins typically contain ∼10 observations; any bin with fewer
than five points is rejected.

Ulysses observations are made at 1-s cadence; however, the im-
portant physical scale for kinetic plasma physics in the solar wind
is the proton gyroscale ρi . In order to compare different periods di-
rectly and to cast our results in physically relevant units, we convert
the spacecraft observation frequency into a flow-parallel wavenum-
ber k by dividing by the average solar wind speed |V| and normalize
this by ρi :

kρi = 2πf ρi

|V |
= 2πf

√
2kBTimi

e|V ||B|
, (1)

where kB is Boltzmann’s constant, Ti is the proton temperature, mi

is the mass of a proton, e is the charge on a proton and |B| is the
magnetic field strength.

3 A N I S OT RO P Y O F TH E E N T I R E
I N E RT I A L R A N G E

First, we analyse a period of fast polar wind from Ulysses data
between days 100 and 200 of 1995; during this time Ulysses moved
from a solar latitude of 28◦ to 79◦ and distance of 1.38 to 1.93 au.
Such a long interval is necessary to obtain an anisotropic power
spectrum at the lowest frequencies used here; shorter periods can
be used if angular resolution is not required at such low frequencies.
Fig. 1 shows the trace of the magnetic field power tensor, averaged
over periods when the solar wind flow is parallel, P||(0◦ ≤ θB < 10◦)
and perpendicular, P⊥(80◦ ≤ θB < 90◦) to the local magnetic field
calculated using wavelets. We also show the average Fourier power
for the same period. At the smallest values of kρi , the power is
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Figure 1. Trace of the wavelet and Fourier power spectra of magnetic field
observations from Ulysses for the period between days 100 and 200 of 1995.
Frequencies are converted to wavenumbers using the solar wind velocity and
normalized to the ion gyroradius ρi (equation 1). See Fig. 4 for compensated
spectra.

isotropic and all three lines lie close together with a spectral index
of approximately −1. At kρi ≈ 3×10−3, P|| begins to diverge from
the Fourier power and P⊥. The power anisotropy increases as kρi

increases; P⊥ and the Fourier power follow each other closely and
are a factor of 5 larger than P|| at the largest kρi measured. We stress
that the use of wavelets to analyse the anisotropy of the magnetic
field means that the magnetic field is not broken into components
parallel and perpendicular to the mean field. Thus the terms P|| and
P⊥ do not refer to components of the field but to the mean trace
power in the field when the flow past the spacecraft is parallel or
perpendicular to the mean field.

In Fig. 2, we show the dependence of spectral index α on scale; α

is determined by a least-squares fitting in log space of a straight
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Figure 2. Dependence of the spectral index in different scale ranges on angle
to the local mean magnetic field direction. The error bars are calculated from
the residuals of linear least-squares fitting of straight lines to log(P) versus
log(kρi ).
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Imbalanced Strong MHD Turbulence

Lithwick, Goldreich & SS (2007)

Anisotropic Kolmogorov spectra:

w±
λ ∼ (ε±)2/3

(ε∓)1/3
λ1/3

Λλ ∼ (ε−)1/3

(ε+)2/3
VAλ

2/3



The ratio of the Elsasser amplitudes = the ratio of 
the corresponding energy fluxes

Modified critical balance:                           
cascade time  =  correlation time of straining 
imposed by oppositely directed waves

When the energy fluxes are equal, the turbulence 
corresponds to the balanced strong cascade



Other views on Imbalanced MHD Turbulence

Beresnyak & Lazarian (2008)

Chandran (2008)

Perez & Boldyrev (2009)

Podesta & Bhattacharjee (2010)

The Solar Wind is probably the best laboratory 
we have to study MHD Turbulence


