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Motivation

* Before proper understanding of networks, neural models
were studied on regular lattice which was clearly
unrealistic. To gain proper insight into the phenomena
happening in neural networks it iIs necessary to have a
good approximation of the real networks in the brain.

* Itis believed that complete information about Neuronal
Networks is not genetically stored. Possibly, information
about only important neurons and axons is genetically
dictated and the rest of the network is dynamically
generated.



Networks

* Past decade has seen enormous activity in the analysis of
different networks.

* Various networks arising in nature have been analysed
and found to have certain properties like small world, scale
free etc.

* As a result, some real brain networks have been studied
experimentally with special emphasis on the structure of
the neural network.

* Nervous system of a small work C. Elegans in known
completely which will be used for comparisons.



Networks of Neurons and
Learning

* Network - neurons are connected with complex network
topology. Recent advances in the Network Theory is
shading some light on possible structures.

* Synapses - the coupling strength between two neurons at
the synapses depends on the edge and it also changes
with time on a slower time scale. This is interpreted as
learning.

* Hebbian learning - Hebb gave a general argument
underlying the learning dynamics which has served as a
guiding principle for the most of the learning rules.
According to this principle synaptic changes are driven by
correlated activity of pre- and postsynaptic neurons.







Models Used

* Chaotic Logistic Map: Simple but chaotic
discrete dynamics. Has nothing to do with
neuronal dynamics.

* Mirollo-Strogatz with STDP: This is a crude model
of neuron dynamics which gives rise to spikes but the
strength of the synapses is made to evolve according to
realistic rule.

* Conductance based leaky Integrate-and-Fire

model: This is a more realistic model. We used a ready
made neural simulation tool called NEST (M-O Gewaltig
and M. Diesmann (2007), Scholarpedia, 2(4):1430).



Hebb’s Postulate

When an axon of a cell A is near enough to excite cell B or
repeatedly or persistenly takes part in firing it, some growth
process or metabolic change takes place in one or both cells
such that A’s efficiency, as one of the cells firing B, Is
Increased.

Such a mechanism would help to stabilize specific
neuronal activity patterns in the brain. If neuronal activity
patterns correspond to behavior, then the stabilization of
specific patterns implies the learning of specific types of
behaviors.



Spike timing dependent plasticity

* Last decade has seen a new development in modeling
learning. It has been found experimentally that exact timing
of the firing of the spikes is important in determining the
change in the coupling strength of the synapse.

* |f the post-synaptic neuron fires within some time after the
pre-synaptic neuron has fired then then the coupling
strength increases. On the other hand, if the post-synaptic
neuron fires just before the pre-synaptic neuron then it
leads to the decrease of the coupling strength.
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Biological Findings

It has been observed that just after birth the brain has
dense network of neurons and in the process of learning
some connections are pruned to obtain the final network.

This indicates that learning is a relevant mechanism in
determining the network structure.

This happens even in a simple organism like C. Elegans
which has 306 neurons and around 2400 connections

It is found that even a simple organism like C. Elegans
which has a very simple nervous system produces excess
processes which are pruned (see W. G. Wadsworth,
Current Biology (2005) vol 15 pg R796).



Expt: Effect of Sensory Activity

Developmant 125, 1881-1002 [128d)

DEVAETD

1891

Sensory activity affects sensory axon development in C. elegans
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SUMMARY

The simple nervous system of the nematode C. elegans
consists of 302 neurons with highly reproducible
morphologies, suggesting a hard-wired program of axon
ouidance. Surprisingly, we show here that sensory aetivity
shapes sensory axon morphology in C. elegans. A class of
mutants with deformed sensory cilia at their dendrite
endings have extra axon branches, suggesting that sensory
deprivation disrupts axon outgrowth. Mutations that alter
calcium channels or membrane potential cause similar
defects. Cell-specific perturbations of sensory activity can
cause cell-autonomous changes in axon morphology.

Although the sensory axons initially reach their targets in
the embryo, the mutations that alter sensory activity cause
extra axon growth late in development. Thus,
perturbations of activity affect the maintenance of sensory
axon morphology after an initial pattern of innervation is
established. This system provides a genetically tractable
model for identifyving molecular mechanisms linking
neuronal activity to nervous system structure.

Key words: C. elegans, Sensory neurons, Activity-dependent
development, axon outgrowth




Expt: Scale-Free Networks In Brain
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Scale-Free Brain Functional Networks
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Functional magnetic resonance imaging 1% used to extract functional networks connecting correlated
human brain sites. Analysis of the resulting networks in different tasks shows that (a) the distnbution of
functional connections, and the probability of finding a link versus distance are both scale-free, (b) the
characteristic path length is small and comparable with those of eguivalent random networks, and (c) the
clustering coefficient 1 orders of magnitude larger than those of equivalent random networks. All these
properties, typical of scale-free small-world networks, reflect important functional information about
brain states.

DOL: 10.1103/PhysRevLen. 34.018102 PACS numbers: B7.185n, 87,19 La, 89.75.Da, 89.75Hc
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Coupling strengths

Evolution of the network
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How to characterize the network

* Eigenvalue spectrum / Spectral Plots
- global information of network topology
* Motif distribution
- local information about distribution of
subnetworks of given size
* Hierarchical characterization

- studying the distribution of neighbor of neighbors
and so on

* Significance profile
* etc...



All possible connected triads
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The final Network

This shows the final network and the histogram of the distribution of
triads. This histogram is a robust signature of the final network. We have
checked it for networks of different sizes and with addition of noise.
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Evolution of eigenvalues
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log(n. of nodes with given degree)
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Evolution of synaptic strengths
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Final Network: Motif Distribution
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Final Network: Significance Profile

(a) STDP-driven evolved networks
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Effect of Asymmetry

Normalized Z score
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Normalized Z score
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== C. elegans neural network
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Normahzed 7 score
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Future Directions

* Studying the effect of other factors on
network structure.

* Studying information processing capabillities
of the STDP driven networks.

* Studying synchronization properties of
these networks.
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