Chemistry of the Thyroid Gland: Thyroid Hormones and Antithyroid Drugs

G. Mugesh
Department of Inorganic & Physical Chemistry
Indian Institute of Science
Bangalore 560 012, INDIA

Humboldt Kolleg, IIA Bangalore, February 2-5, 2011
Thyroid Hormone Synthesis

Tyrosine → TPO → Tyrosine Hydroxylase → Dihydroxytyrosine → TPO → Iodination → Iodothyronine → Thyroid Hormone

Iodine Recommended Daily Intake

Hyperthyroidism - anti-thyroid drugs

Humboldt Kolleg, IIA Bangalore, February 2-5, 2011
Selenenyl Iodide – Non-existent Compound?

For a long time, uncharged covalent selenium iodides have been regarded as non-existent.

W. E. Dasent, Nonexistent compounds, Marcel Dekker, New York (1965).

\[
\begin{align*}
\text{Isodesmic Equation} & \\
\text{Se-Se} + \text{I-I} & \rightleftharpoons 2 \text{Se-I} \\
172 + 150 & = 322 \text{ kJ/mol} \\
2 \times 150 & = 300 \text{ kJ/mol}
\end{align*}
\]

Humboldt Kolleg, IIA Bangalore, February 2-5, 2011
Anti-thyroid Drugs – Treatment for Hyperthyroidism

- Inhibition of thyroid peroxidase (TPO) by coordination to iron
- Donor-acceptor complexes with molecular iodine
- PTU and MTU – Block T4 \(\rightarrow \) T3 conversion (ID-I)

Interactions of Antithyroid Drugs with Iodine

Humboldt Kolleg, IIA Bangalore, February 2-5, 2011
Se-MMI – Tautomeric Structures

\[\begin{align*}
(1a) & \quad E = S \\
(2a) & \quad E = Se
\end{align*} \]

\[\begin{align*}
(1b) & \quad E = S \\
(2b) & \quad E = Se
\end{align*} \]

E = O, does not exist; E = Te, very unstable

13-C NMR: \(^1J_{se-c} = 220 \text{ Hz} \)

C-Se single bond, \(^1J_{se-c} \approx 110-140 \text{ Hz} \); C=Se double bond, \(^1J_{se-c} \approx 220-240 \text{ Hz} \)

Interactions of Antithyroid Drugs with Iodine

Hydrolysis by Metallo-β-Lactamases

Cephalothin

Cefamandole

Cefazolin

Moxalactam

Moxalactam

Humboldt Kolleg, IIA Bangalore, February 2-5, 2011
Tautomeric Forms of MTT and MDT

Thyroid Gland

Anti-thyroid drugs

Tyrosine

Thyroxine (T4)

Humboldt Kolleg, IIA Bangalore, February 2-5, 2011
Inhibition of LPO-catalyzed Iodination

<table>
<thead>
<tr>
<th>No</th>
<th>Compound</th>
<th>Structure</th>
<th>IC$_{50}$ values (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MMI</td>
<td></td>
<td>4.09 ± 0.56</td>
</tr>
<tr>
<td>2</td>
<td>MTT</td>
<td></td>
<td>7.29 ± 0.77</td>
</tr>
<tr>
<td>3</td>
<td>MDT</td>
<td></td>
<td>3.04 ± 0.65</td>
</tr>
</tbody>
</table>

Humboldt Kolleg, IIA Bangalore, February 2-5, 2011
Tamilselvi, A.; Mugesh, G.

Humboldt Kolleg, IIA Bangalore, February 2-5, 2011
Sulfur-Iodine Interactions

Thione-Iodine complexes (a) DMETT.I$_2$, (b) MMI.I$_2$, (c) MDT.I$_2$, (d) PTU-I$_2$, (e) MTDT-I$_2$, (f) free iodine

Tamilselvi, A.; Mugesh, G.
Thyroid hormone binding in Transthyretin (TTR)

- Halogen binding sites P1, P2, P3 and their symmetry related pairs P1', P2', P3' in thyroid hormone transport protein Transthyretin.
- T_4 (ball and stick - red) binding is greatly influenced by charged residues Lys15 and Glu54 in P1 pocket.
Hydrogen bonding with Lys15 and Glu54

4-phenolic hydroxyl group forms water mediated hydrogen bond to Ser117.

Halogen bonding in human TTR-T4 complex

- 5'-I atom of phenolic ring interacts with Leu110 backbone N atom in P3 pocket (I…..N, 3.5 Å)
- 3'-I atom interacts with the carbonyl oxygen of Ala109 in P2 pocket formed by other monomer of the protein (I…..O, 2.8 - 3.3 Å)
Binding of T3 with TTR

3'-I interacts directly with Ser117 side chain hydroxyl (I….O, 2.86 Å) although a series of contacts with 108-110 and 117-119 residues are possible with distances between 2.86 Å & 3.72 Å.

Superimposed structure of T4 (thick line) and T3 (light line) bound to human TTR. Amino acids are represented by single letter codes.

J. Biol. Chem. 1992, 267, 1, 353-357.
The binding affinity decreases upon removal of iodines.

J. Biol. Chem. 1992, 267, 1, 353-357.
The entire body metabolism depends on the amount of thyroid hormones produced. INACTIVATION produces the active thyroid hormone. INACTIVATION protects tissues from an excess of thyroid hormone.

Humboldt Kolleg, IIA Bangalore, February 2-5, 2011
Iodothyronine Deiodinase Mimics

- Enol-keto tautomerism is required
- Outer ring iodines are more reactive than the inner-ring ones
Iodothyronine Deiodinase Mimics

- Physiologically relevant conditions
- Highly specific to inner-ring deiodination
- Quantitative conversion of T4 to rT3 in 30 h

The rate of deiodination is highly pH dependent.

A thiol adjacent to selenol is important for the deiodination.

Replacing -SeH with -SH reduces the activity.
Positive charge on inner–ring iodine decreases upon deiodination of T4.

Halogen bonding may play an important role in the inner-ring deiodination.
Iodothyronine Deiodinase Mimics

Does an increase in reactivity change the selectivity??

Manna and Mugesh, Unpublished results.

Humboldt Kolleg, IIA Bangalore, February 2-5, 2011
An increase in the reactivity does not change the selectivity, but it leads to further deiodination.

rT3 undergoes a further deiodination to form T2.

Manna and Mugesh, Unpublished results.
Iodothyronine Deiodinase Mimics

Manna and Mugesh, Unpublished results.

Humboldt Kolleg, IIA Bangalore, February 2-5, 2011
Effect of Se…N interactions on 77Se NMR
DFT Calculations

![Chemical Structure](image)

Table 1: Calculated Bond lengths and angles for different compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>$r_{\text{Se1-Se2}}$ (Å)</th>
<th>$r_{\text{Se2-N}}$ (Å)</th>
<th>$\angle \text{Se1-Se2-N}$ (°)</th>
<th>q_{Se1}</th>
<th>q_{Se2}</th>
<th>E (kcal.mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.467</td>
<td>2.337</td>
<td>167.14</td>
<td>0.133</td>
<td>0.450</td>
<td>21.16</td>
</tr>
<tr>
<td>2</td>
<td>2.472</td>
<td>2.327</td>
<td>167.14</td>
<td>0.129</td>
<td>0.452</td>
<td>37.16</td>
</tr>
<tr>
<td>3</td>
<td>2.471</td>
<td>2.337</td>
<td>167.00</td>
<td>0.130</td>
<td>0.448</td>
<td>37.75</td>
</tr>
<tr>
<td>4</td>
<td>2.495</td>
<td>2.250</td>
<td>167.34</td>
<td>0.104</td>
<td>0.477</td>
<td>47.51</td>
</tr>
<tr>
<td>5</td>
<td>2.426</td>
<td>2.629</td>
<td>164.65</td>
<td>0.172</td>
<td>0.294</td>
<td>14.79</td>
</tr>
<tr>
<td>6</td>
<td>2.431</td>
<td>2.593</td>
<td>165.08</td>
<td>0.165</td>
<td>0.294</td>
<td>16.61</td>
</tr>
<tr>
<td>7</td>
<td>2.432</td>
<td>2.586</td>
<td>165.46</td>
<td>0.164</td>
<td>0.290</td>
<td>16.91</td>
</tr>
<tr>
<td>8</td>
<td>2.434</td>
<td>2.583</td>
<td>164.71</td>
<td>0.162</td>
<td>0.289</td>
<td>17.37</td>
</tr>
</tbody>
</table>

Geometry optimization: B3LYP/6-31+G**; NBO analyses: B3LYP/6-311++G**

Humboldt Kolleg, IIA Bangalore, February 2-5, 2011
DFT Calculations

<table>
<thead>
<tr>
<th>Compound</th>
<th>$r_{\text{Se-S}}$ (Å)</th>
<th>$r_{\text{S-N}}$ (Å)</th>
<th>$<\text{Se-S-N}$ (°)</th>
<th>q_{Se}</th>
<th>q_{S}</th>
<th>E (kcal.mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>2.924</td>
<td>2.549</td>
<td>172.15</td>
<td>0.268</td>
<td>0.252</td>
<td>12.77</td>
</tr>
<tr>
<td>10</td>
<td>2.293</td>
<td>2.557</td>
<td>172.13</td>
<td>0.268</td>
<td>0.251</td>
<td>12.44</td>
</tr>
<tr>
<td>11</td>
<td>2.294</td>
<td>2.552</td>
<td>172.13</td>
<td>0.268</td>
<td>0.2578</td>
<td>12.67</td>
</tr>
<tr>
<td>12</td>
<td>2.301</td>
<td>2.518</td>
<td>172.11</td>
<td>0.258</td>
<td>0.253</td>
<td>13.97</td>
</tr>
<tr>
<td>13</td>
<td>2.284</td>
<td>2.734</td>
<td>168.2</td>
<td>0.271</td>
<td>0.165</td>
<td>7.75</td>
</tr>
<tr>
<td>14</td>
<td>2.289</td>
<td>2.688</td>
<td>168.94</td>
<td>0.264</td>
<td>0.164</td>
<td>9.23</td>
</tr>
<tr>
<td>15</td>
<td>2.293</td>
<td>2.659</td>
<td>169.38</td>
<td>0.260</td>
<td>0.161</td>
<td>10.10</td>
</tr>
<tr>
<td>16</td>
<td>2.287</td>
<td>2.719</td>
<td>168.15</td>
<td>0.267</td>
<td>0.162</td>
<td>8.68</td>
</tr>
</tbody>
</table>

Geometry optimization: B3LYP/6-31+G**; NBO analyses: B3LYP/6-311++G**
DFT Calculations

Compound	r_{S-Se} (Å)	r_{Se-N} (Å)	$<$S-Se-N ($^\circ$)	q_S	q_{Se}	E (kcal.mol$^{-1}$)	$n_N \rightarrow \sigma^{*}\text{S-Se}$
17 | 2.372 | 2.284 | 165.94 | 0.017 | 0.518 | 41.70 |
18 | 2.377 | 2.273 | 165.95 | 0.012 | 0.522 | 43.70 |
19 | 2.376 | 2.283 | 166.00 | 0.012 | 0.519 | 40.85 |
20 | 2.394 | 2.229 | 166.11 | 0.003 | 0.537 | 49.94 |
21 | 2.318 | 2.582 | 164.54 | 0.054 | 0.357 | 16.72 |
22 | 2.322 | 2.557 | 164.74 | 0.049 | 0.357 | 18.96 |
23 | 2.322 | 2.556 | 164.97 | 0.050 | 0.355 | 18.20 |
24 | 2.324 | 2.549 | 164.28 | 0.047 | 0.351 | 18.78 |

Geometry optimization: B3LYP/6-31+G**; **NBO analyses**: B3LYP/6-311++G**

Humboldt Kolleg, IIA Bangalore, February 2-5, 2011
Acknowledgement

Department of Science and Technology (DST), New Delhi

Alexander von Humboldt Foundation, Germany

Gouriprasanna Roy
Debasis Das
A. Tamilselvi
Debasish Manna

Thank You

Humboldt Kolleg, IIA Bangalore, February 2-5, 2011
Interactions of Antithyroid Drugs with Iodine

Far-IR spectra

141: ν(I-I) stretching vibration mode.

Di-iodine vapor gives a strong band at 216, which appears at 180 in the solid state.

This band shifts to lower wavenumbers upon coordination to a donor atom, reflecting a reduction in the I-I bond order.

FT-Raman spectra

Γ^{-} can exist as a real Γ^{-} entity or an $\Gamma^{-}\cdot I_{2}$ adduct.

110: normally attributed to the symmetric stretching of Γ^{-} – symmetric ion – one Raman active band.

143: the anti-symmetric stretching may become Raman active.