Chemistry of the Thyroid Gland: Thyroid Hormones and Antithyroid Drugs

G. Mugesh Department of Inorganic & Physical Chemistry Indian Institute of Science Bangalore 560 012, INDIA

Hormones and Thyroid Gland

Image taken from: http://www.biodiagnostiki.com

Thyroid Hormone Synthesis

Selenenyl Iodide – Non-existent Compound?

For a long time, uncharged covalent selenium iodides have been regarded as non-existent .

W. E. Dasent, Nonexistent compounds, Marcel Dekker, New York (1965) .

du Mont, et al. Angew. Chem. Int. Ed. 1987, 26, 780.

Anti-thyroid Drugs – Treatment for Hyperthyroidism

- Inhibition of thyroid peroxidase (TPO) by coordination to iron
- Donor-acceptor complexes with molecular iodine
- > PTU and MTU Block T4 \rightarrow T3 conversion (ID-I)

Interactions of Antithyroid Drugs with Iodine

Isaia et al. J. Am. Chem. Soc. 2002, 124, 4538. J. Med. Chem. 2008, 51, 4050.

Se-MMI – Tautomeric Structures

C-Se single bond, ${}^{1}J_{se-c} \sim 110-140$ Hz; C=Se double bond, ${}^{1}J_{se-c} \sim 220-240$ Hz

Interactions of Antithyroid Drugs with Iodine

Hydrolysis by Metallo- β -Lactamases

Tautomeric Forms of MTT and MDT

Inhibition of LPO-catalyzed Iodination

No	Compound	Structure	IC ₅₀ values (µM)	CHEMMEDCHEM
1	MMI	H-N_N/CH ₃ S	4.09 ± 0.56	CHEMISTRY ENABLING DRUG DISCOVERY
2	MTT	H- _N , -CH ₃ N=N S	7.29 ± 0.77	
3	MDT	H-N, S N= CH ₃	3.04 ± 0.65	A Jeannal of A Jeannal of Dempulsor Dempu

Sulfur-Iodine Interactions

2.679 A I3

2.88

2.686 Å

11

Tamilselvi, A.; Mugesh, G. Bioorg. Med. Chem. Lett. 2010, 20, 3692.

Sulfur-Iodine Interactions

Thione-Iodine complexes (a) DMETT.I₂ (b) MMI.I₂, (c) MDT.I₂, (d) PTU-I₂ (e) MTDT-I₂, (f) free iodine

Tamilselvi, A.; Mugesh, G. Bioorg. Med. Chem. Lett. 2010, 20, 3692.

Thyroid hormone binding in Transthyretin (TTR)

- Halogen binding sites P1, P2, P3 and their symmetry related pairs P1', P2', P3' in thyroid hormone transport protein Transthyretin.
- T₄ (ball and stick red) binding is greatly influenced by charged residues Lys15 and Glu54 in P1 pocket.

Halogen bonding in human TTR-T4 complex

 Hydrogen bonding with Lys15 and Glu54
 4-phenolic hydroxyl group forms water mediated hydrogen bond to Ser117.

Acta Cryst. 1996, D52, 758-765.

Halogen Bonding

- 5'-I atom of phenolic ring interacts with Leu110 backbone N atom in P3 pocket (I....N, 3.5 Å)
- 3'- I atom interacts with the carbonyl oxygen of Ala109 in P2 pocket formed by other monomer of the protein (I....O, 2.8 - 3.3 Å)

Binding of T3 with TTR

J. Biol. Chem. 2004, 279, 25, 26411 - 26416.

Binding of 3,3'-T2 with human TTR

Superimposed structure of T4 (thick line) and T3 (light line) bound to human TTR. Amino acids are represented by single letter codes.

J. Biol. Chem. 1992, 267, 1, 353-357.

3'-I interacts directly with Ser117 side chain hydroxyl (I....O, 2.86 Å) although a series of contacts with 108-110 and 117- 119 residues are possible with distances between 2.86 Å & 3.72 Å)

Binding of Thyroid Hormones to TTR

The binding affinity decreases upon removal of iodines.

J. Biol. Chem. 1992, 267, 1, 353-357.

Iodothyronine Deiodinases

The entire body metabolism depends on the amount of thyroid hormones produced.

Behne et al. BBRC, 1990, 173, 1143; Berry et al. Nature 1991, 349, 438.

Goto et al. Angew. Chem. Int. Ed. 2010, 49, 545.

Physiologically relevant conditions

 \succ Highly specific to inner-ring deiodination

Quantitative conversion of T4 to rT3 in 30 h

Manna and Mugesh, Angew. Chem. Int. Ed. 2010, 49, 9246 - 9249.

Replacing -SeH with -SH reduces the activity.

Possible Mechanism

 \blacktriangleright Positive charge on inner–ring iodine decreases upon deiodination of T4.

 \succ Halogen bonding may play an important role in the inner-ring deiodination.

Does an increase in reactivity change the selectivity??

Manna and Mugesh, Unpublished results.

An increase in the reactivity does not change the selectivity, but it leads to further deiodination.

 \blacktriangleright rT3 undergoes a further deiodination to form T2.

Manna and Mugesh, Unpublished results.

Manna and Mugesh, Unpublished results.

Effect of Se...N interactions on ⁷⁷Se NMR

DFT Calculations

Se Se 1 , R = Me 2 , R = Et 3 , R = <i>n</i> Pr 4 , R = <i>i</i> Pr	II N-R 5, F 6, F 7, F 8, F	Se NH-R R = Me R = Et R = nPr R = <i>i</i> Pr	Set 2.472A Se2 2.3 2	ZTA N	AIM in	hage of 1
Compound	r _{Se1∵Se2/} (Å)	r _{se2⋯N/} (Å)	<se1-se2-n (°)<="" th=""><th>$q_{\scriptscriptstyle { m Se1}}$</th><th>$q_{_{ m Se2}}$</th><th>E (kcal.mol⁻¹) $n_N \rightarrow \sigma_{Se-Se}^*$</th></se1-se2-n>	$q_{\scriptscriptstyle { m Se1}}$	$q_{_{ m Se2}}$	E (kcal.mol ⁻¹) $n_N \rightarrow \sigma_{Se-Se}^*$
1	2.467	2.337	167.14	0.133	0.450	21.16
2	2.472	2.327	167.14	0.129	0.452	37.16
3	2.471	2.337	167.00	0.130	0.448	37.75
4	2.495	2.250	167.34	0.104	0.477	47.51
5	2.426	2.629	164.65	0.172	0.294	14.79
6	2.431	2.593	165.08	0.165	0.294	16.61
7	2.432	2.586	165.46	0.164	0.290	16.91
8	2.434	2.583	164.71	0.162	0.289	17.37

Geometry optimization: B3LYP/6-31+G**; NBO analyses: B3LYP/6-311++G**

DFT Calculations

9, R = Me 10, R = Et 11, R = <i>n</i> Pr 12, R = <i>i</i> Pr	Se-SNH-F 13, R = Me 14, R = Et 15, R = <i>n</i> Pr 16, R = <i>i</i> Pr	2	Se 2.233 A S 2.557 A 10		AIM ima	AIM image of 9	
Compound	r _{se⊷s/} (Å)	$r_{\text{S··N/}}(\text{Å})$	<se-s-n (°)<="" th=""><th>$oldsymbol{q}_{Se}$</th><th>q_s</th><th>E (kcal.mol⁻¹)</th></se-s-n>	$oldsymbol{q}_{Se}$	q _s	E (kcal.mol ⁻¹)	
						$n_N \rightarrow \sigma_{Se-S}$	
9	2.924	2.549	172.15	0.268	0.252	12.77	
10	2.293	2.557	172.13	0.268	0.251	12.44	
11	2.294	2.552	172.13	0.268	0.2578	12.67	
12	2.301	2.518	172.11	0.258	0.253	13.97	
13	2.284	2.734	168.2	0.271	0.165	7.75	
14	2.289	2.688	168.94	0.264	0.164	9.23	
15	2.293	2.659	169.38	0.260	0.161	10.10	
16	2.287	2.719	168.15	0.267	0.162	8.68	

Geometry optimization: B3LYP/6-31+G**; NBO analyses: B3LYP/6-311++G**

DFT Calculations

S SeN R 17, R = Me 18, R = Et 19, R = <i>n</i> Pr 20, R = <i>i</i> Pr	21, R = Me 22, R = Et 23, R = <i>n</i> Pr 24, R = <i>i</i> Pr	-R 🖍	2.377A Se 2.273A 18		AIM imag	ge of 17
Compound	r _{s⊶se/} (Å)	r _{se⊷N/} (Å)	<s-se-n (º)<="" th=""><th>qs</th><th>$q_{\scriptscriptstyle { m Se}}$</th><th>E (kcal.mol⁻¹) $n_N \rightarrow \sigma_{S-Se}^*$</th></s-se-n>	q s	$q_{\scriptscriptstyle { m Se}}$	E (kcal.mol ⁻¹) $n_N \rightarrow \sigma_{S-Se}^*$
17	2.372	2.284	165.94	0.017	0.518	41.70
18	2.3 77	2.273	165.95	0.012	0.522	43.70
19	2.376	2.283	166.00	0.012	0.519	40.85
20	2.394	2.229	166.11	0.003	0.537	49.94
21	2.318	2.582	164.54	0.054	0.357	16.72
22	2.322	2.557	164.74	0.049	0.357	18.96
23	2.322	2.556	164.97	0.050	0.355	18.20
24	2.324	2.549	164.28	0.047	0.351	18.78

Geometry optimization: B3LYP/6-31+G**; NBO analyses: B3LYP/6-311++G**

Acknowledgement

Department of Science and Technology (DST), New Delhi

Alexander von Humboldt Foundation, Germany

Gouriprasanna Roy Debasis Das A. Tamilselvi Debasish Manna

Interactions of Antithyroid Drugs with Iodine

Far-IR spectra

141: v(I-I) stretching vibration mode.

Di-iodine vapor gives a strong band at 216, which appears at 180 in the solid state.

This band shifts to lower wavenumbers upon coordination to a donor atom, reflecting a reduction in the I-I bond order.

Roy, Nethaji, & Mugesh, Org. Biomol. Chem., 2006, 4, 2883.

FT-Raman spectra

- ✓ I_3^- can exist as a real I_3^- entity or an $I^- \cdot I_2$ adduct.
- 110 : normally attributed to the symmetric stretching of I_3 symmetric ion one Raman active band.
- 143 : the anti-symmetric stretching may become Raman active.

