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What is percolation?
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real life percolation
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Percolation
I studied since 1957 (Broadbent&Hammersley)
I on the Z2� lattice graph:

I with prob. p keep edges
I with prob 1� p remove edges

I the resulting object is a random subgraph Λp � Z2

I percolation question: is there an in�nite connected
subgraph of Λp

I Theorem:

9 pc 2 (0, 1) such that (1)

for p < pc ) with prob 1 no in�nite cluster (2)

for p > pc ) with prob 1 is an in�nite cluster (3)

I Kesten 1980: pc = 1/2
I the above model is called bond percolation
I removing/keeping sites instead of edges de�nes site
percolation
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some pictures
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variants of the classical percolation problem

I di¤erent lattices Zn with di¤erent neighborhood
structure

I random graphs
I giant component
I on complete graph KN : pc = 1

N

I on trees it is closely related to critical branching
processes

I continuum percolation
I directed percolation
I �rst passage percolation
I for all these generalizations is a critical threshold pc
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I very active �eld of research
I many open questions

I what happens at pc
I how to determine pc
I theory is well developed for lattices in high dimensions

I applications:
I material science (erosion of materials)
I spreading phenomena: forest �re, epidemics,....
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The origin of the name
I the American version of "the adventures of Baron
Münchhausen"

I the Baron pulled himself out of a swamp by his
bootstraps (on his hairs in the German version)

I
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Bootstrap percolation

I two states 0 and 1 (infected)
I infect initially at random vertices with probability p0
I infected vertices remain infected forever
I deterministic discrete dynamics: vertex gets infected if
it has � ∆ infected neighbors

I how large is the �nally infected set?
I studied in physics literature since 70s (mainly dual
process)

I mainly studied on lattices, hypercube
(Balogh,Bollobas,Morris 2009) and regular trees
(Biskup, Schoneman 2009)
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some bootstrap percolation pictures
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SOC versus Bootstrap
I Formal similarities:

I local dynamics highly nonlinear e.g. threshold function
I SOC: if "infection" of site is larger ∆ ) infect neighbors
I Boot: if "infection" of neighbors is larger ∆ ) infect
site

I this is a kind of local duality

I Di¤erences:
I SOC is not restricted to local threshold dynamics
(example: Bak&Sneppen model of punctured
equilibrium)

I in general SOC is : a dynamical balance between
I triggering the system slowly
I dissipation at small set/boundary

I this can cause the system to stabilize at a critical state
(phase transition)

I to make Bootstrap-SOC one would have to include such
e¤ects (loss of infection + feed in of infection)

I possible candidate: competing bootstrap infections



Philippe
Blanchard, Tyll

Krueger

Overview

Percolation

Bootstrap
percolation

inhomogeneous
random graph
models

applications

Bootstrap percolation on regular trees
I �nd pc s.t. for p > pc the whole d�tree becomes
infected eventually with probability one

I ∆ = 2, d > 3 : (Blanchard, Krueger 2005) and
(Balogh,Peres,Pete 2006):

pc = 1�
(d � 2)2d�5

(d � 1)d�2 (d � 3)d�3
(4)

I for random trees with GF g (z) and min-outdegree
� ∆ = 2 : pc = 1� q where q 2 (0, 1) is the smallest
value s.t. the following equation has a real positive
solution z

q
= (1� z) g 0 (z) + g (z) (5)

(Blanchard,Krueger 2005)
I similar results for regular random graphs (Balogh,Pittel
2007)
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Bootstrap on fat trees

I local clustering accelerates the infection spread (in
classical epidemics clustering slows down the spread)

I pfatc = 3
2 �

p
2 < ptreec = 1

9

I

generalized tree; the grey
vertices where inital black
but got eventually corrupt
(local threshold =2)

4tree with initial
white and black
vertices
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Bootstrap on Erdös&Renyi graphs

I for G
�
n, p = c

n

�
one has

st+1 = 1� (1� p0) e�cst
l=∆�1
∑
l=0

(cst )
l

l !
(6)

= 1� (1� p0)Pr fPois (cst ) < ∆g (7)

I there is at most one critical pc
I for ∆ = 2

pc = 1�
2e(�

1
2+

1
2 c�

1
2

p
c2�3�2c)

c
�
�1+ c �

p
c2 � 3� 2c

� (8)

I the critical window around pc is of order n�
1
2
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Dynamics at the critical density

I Example: p0 = 0.08, c = 3.2, ∆ = 2
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I around pc long transient phases
I for p0 > pc0 : s is close to the ∆� core of the graph
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above and below the critical density
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The �xed point set as a function of the initial
density (c=4)
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Bollobas-Janson-Riordan graphs (2005)

I generalizations of Erdös-Renyi graphs
I good balance between simpli�cation and complexity
I provide gauge models for more real life graph models
I inhomogeneous in vertex properties but independent
edges

I exact mathematical estimations for many graph
properties possible

I some parts of theory easy to extend to weighted graphs
I includes also evolving graphs
I appropriate for SIR processes with individual dependent
infection rates
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general setting for BJR graphs

I the n vertices have properties fωig with values in
ground space S

I the values fωig are asymptotically µ distributed
I the edge probabilities for vertices of given types are
independent and de�ned via a kernel κ

Pr (i � j) = κ (ωi ,ωj )

n
(9)
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the giant component

I let ρ (ω) =
Pr fPoisson process starting with type ω survivesg

I ρ (ω) is solution of

f = 1� e�Tf (10)

with Tf (ω) =
Z

κ (ω, η) f (η) dµ (η) (11)

I the giant component is given by n
R

ρ (ω) dµ (ω)
(vertices where the associated Poisson process does not
die out join the giant component

I threshold: kTk = 1 =) for kTk = ∞ no epidemic
threshold!
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Bootstrap percolation on BJR graphs

I Let κ (ω, η) be of �nite type
I Theorem (Bl,D,Kr,S-S 2010):

I Let p0 be disjoint from a �nite critical setn
p1c , ...., p

l
c

o
, and let S be the asymptotic size of the

bootstrap process on G (n, κ, µ): whp S = ns + o (n)
where s =

R
s (ω) dµ (ω) and s (ω) is the smallest

solution > p0 of

s (ω) = 1� (1� p0) e�
R

κ(ω,η)s(η)dµ(η) �

�
 
l=∆�1

∑
l=0

1
l !

Z
[κ (ω, η) s (η)]l dµ (η)

!

I Remark: For ∆ = 1 and p0 & 0 the formula reduces to
the survival probability for the associated Poisson
process



Philippe
Blanchard, Tyll

Krueger

Overview

Percolation

Bootstrap
percolation

inhomogeneous
random graph
models

applications

generalized epidemic processes

I the states of infection are encoded by a �nite alphabet

I e.g.
n
0 , not infected, 1 , infected, 2 , immune

o
I the infection process takes place on a graph G (V ,E )
along edges e 2 E

I the dynamics is de�ned via local transition probabilities
e.g.:

Pr
�

χi (t + 1) = k j χi (t) = k
0	 (12)

= floc
�

χB1(i ) (t)
�
� fmean (χG (t)) (13)

I B1 (i) : set of neighbors of i + vertex i
I χ (t) : state function at time t

I classical assumption on floc : the infection events along
edges are independent
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local threshold processes as bootstrap percolation

I infection events along edges no longer independent
I in many applications there are local thresholds ∆ (i)

# infected neighbors < ∆ (i) :
=) small infection rate ε

# infected neighbors � ∆ (i) :
=) high infection rate α

I ε = 0, α = 1 corresponds to bootstrap percolation
I examples: neuron dynamics, corruption, prejudices,
knowledge spread, opinion spread



Philippe
Blanchard, Tyll

Krueger

Overview

Percolation

Bootstrap
percolation

inhomogeneous
random graph
models

applications

radical opinion formation and terrorism

I �rst studied by S.Galam in 2002 as a classical
percolation problem

I his model: terrorist wants to move (spatially, on a
lattice) from A to B

I he needs to follow a "continuos" path of passive
supporters

I the lattice is determined by social dimension
I below pc : terrorism is regionally restricted
I above pc : terrorism becomes a global phenomena
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the war in Afghanistan
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passive supporters and terrorism

I Q: what is the e¤ect of "collateral damages" on the
prevalence of passive supporters?

I example: Afghanistan

I Warning:
I it is not a real life approximation
I the model shows a possible qualitative dynamic process

I assume that on average:
I to capture/eliminate an active terrorist causes m civilian
victims

I relatives/friends of victims are likely to become passive
supporters (state 1)

I hence a counter terrorist action induces about rm new
passive supporters

I typically rm � 10� 1000
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