Getting and Reading Data

Jayant Murthy
The Indian Institute of Astrophysics www.iliap.res.in jmurthy@yahoo.com

Data Sources

- UV/Optical Data available from MASTran
|labirûliskI ARCHIVE
- http://archive.stsci.edu

News
September 03, 2015: Armstrong et al. light Curves avaliable for K2
Campaign 2 Campaign 2 September 03, 2015: New HLSP: Grism Lens-Amplified Survey from Space ("GLASS") September 02, 2015: Vanderburg and Johnson light curves avalable for
K2 Campaign 3 K2 Campaign 3 July 21, 2015: K2 Campaign 3 Data now Available July 01, 2015: New HLSP: M83 Mosaics
 filters)

Missions

Hubble Hubble Legacy Archive HSTonline DSs JWST K2 KEPLER Swiftuvot XMM-OM BEFS (ORFEUS) Copernicus

Data Sources

- UV/Optical Data

- http://archive.stsci.e
- IR data from IPAC
- http://ipac.caltech.ed

Home News Events
About IPAC
Contact
Image Use Policy
Our Charter
Pur History
Privacy Policy
Privacy Policy
Visitor Information
Browse All Projects
IPAC's Legacy
IRAS
ISO
2MASS
Proposed Projects
NEOCam
Future Projects
WFIRST
In Development Projects
AstroPix
Euclid
LSST
TMT
Operational Projects
Data Archives
IRSA
KOA
NASA Exoplanet Archive NED
Education \& Public Outreach Cool Cosmos

Infrared Processing and Analysis Center
Science and Data Center for Infrared Astronomy

Herschel and Planck Honored with Space Systems Award

6. The Herschel and Planck project teams are this year's recipients of the American Institute of Aeronautics and Astronautics
Space Systems Award.

Colorful Calendar Celebrates 12th Anniversary of Colorful Calend
NASA's Spitzer
 digital calendar.

Events
Yun Wang (IPAC) -- Dark Energy Introducti Overview
Science Talk - Sep 9th, 2015-12:15 pm
Sharon Xuesong Wang (PSU) - Special Tal Paths, Roadblocks, and Byways in Detecti Habitable Rocky Planets in Radial Velocity Habitable Rocky Planets in Rad
Science Talk
Veli-Matti Pelkonen (University of Helsink) Science Talk - Sep 16th, 2015 - $12: 15 \mathrm{pm}$
Caroline Morley (UCSC) Science Talk - Sep 23rd, 2015-12:15 pm
Avi Shporer (Caltech)
Science Talk • Sep 30th, 2015-12:15 pm
Ryan Lau (JPL)
Science Talk - Oct 7th, 2015 - 12:15 pm

BULLETINS

IPAC Wide Service Outage
Announcement
Wed, Jul 15,2015

Data Sources

- UV/Optical Data available from MÅST.

National Aeronautics and Space Administration
Goddard Space Flight Center

- Sciencos and Exploration

Site Map

- Heasarc
- http://heasarc. sa:gov

Guest Jbserver ravilites
\& Science Centers

AGILE	ASCA
Astro-H	Bopposax
COBE	CGRO
Chandra	(

Sic.na

The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA's (and other space agencies') missions studying electromagnetic radiation from extremely energetic cosmic phenomena ranging from black holes to the Big Bang. Since its merger with the Legacy Archive for Microwave Background Data Analysis (LAMBDA) in 2008, the HEASARC archive contains data obtained by high-energy astronomy missions observing in the extreme-ultraviolet (EUV), X-ray, and gamma-ray bands, as well as data from space missions, balloons, and ground-based facilities that have studied the relic cosmic microwave background (CMB) radiation in the sub-mm, mm and cm bands.

HETE-2	INTEGRAL
MAXI	NICER
NUSTAR	ROSAT
RXTE	Suzaku
Swift	WMAP
XMM-Nowton	
NASA Archlves	
ADS	AstroGravs
EOSDIS	ExoArchivo
HORIZONS	IRSA
KOA	LAMBDA
MAST	NExScl
NED	NSSDC

APOD: Astronomy Picture of the Day

Latest News

- XSPEC 12.9.0b,c,d Rele (01 Sep 2015)
Patch 12.9.0b fixes an issue the The (b)vvapec model' pa
12.9.0c fixes a subtle proble 12.9 .0 c fixes a subtle proble defining linked parameters in
models; and patch 12.9.0d fil problem in which the Imod command does not work if ir from an xspec.rc file. - Reminder: Swift Cycle 1 proposals are due by Sept
25, 4:30PM EDT (01 Sep 20
For dails on the 25, 4:30PM EDT
For details on the Swift Cycl
program elements and how program elements and how
submit proposals, see the lir submit proposals, see informa
to the Swift Cycle 12 inform page and also the Cycle 12
- M108 (NGC 3556) Chand Discrete X-Ray Source Cat (31 Aug 2015)
This catalog listing the 0.3-7
properties of 83 discrete so properties of 83 discrete s 60
detected by Chandra in a 60 observation of the isolated e spiral galaxy M 108 (from W
al. 2003, ApJ, 598, 969) is al. 2003, ApJ, 598,
available in Browse and Xar
- Scientific mission of Su - Scientific mission of Su declared complete (28 Aug
JAXA has announced that it
abandoning its heroic effort abandoning its heroic effort
recover Suzaku, and declare

Flexible Image Transport System

- Maintains scientific data format.
- Self-documenting.
- Quick look data:
- DS9.
- FITS Liberator.
- Aladin.
- Once FITS, always FITS.
- FITS software must be able to read all files.
- Standard routines in many languages.
- CFITSIO for C programs.

Definitions

- Primary HDU.
- Followed by extensions.
- Comprised of an integer number of 28808 bit bytes.
\$listhead hlsp_uv-bkgd_galex_map_allsky_fuv_v1_skymap.fits[0] Header listing for HDU \#1:

SIMPLE $=$	T / file does conform to FITS standard
BITPIX $=$	$-32 /$ number of bits per data pixel
NAXIS $=$	$2 /$ number of data axes
NAXIS1 $=$	$3600 /$ length of data axis 1
NAXIS2 $=$	$1800 /$ length of data axis 2

\$listhead hlsp_uv-bkgd_galex_map_allsky_fuv_v1_skymap.fits[1] Header listing for FiDU-\#2:
XTENSION = IMAGE , /IMAGE extension
BITPIX $=-32 /$ number of bits per data pixel
NAXIS = NAXIS1 $=\ldots 360,0 /$ length of data axis 1 NAXIS2 $=\quad 1800$ / length of data axis 2

FITS Definitions

- FITS Header:
- ASCII for quick viewing.
- Keywords: Fields 1-8.
- Upper case letters + numbers + " -" + "-"
- Value: Fields 9-10.
- "=": Assignment
- If Keyword is COMMENT, remaining text is description.

Mandatory Keywords

- SIMPLE = T/file does conform to FITS standard
- BITPIX = bits per data pixel
-32 / number of 2 / number of data axes
- NAXIS1 = data axis 1
- NAXIS2 = data axis 2
- .. EXTEND =
- NAXIS =

3600 / length of

1800 / length of

- SIMPLE: Either T or F. Only found in primary header. dataset may contain extensions

Mandatory Keywords

- SIMPLE = T/file does conform to FITS standard
- BITPIX = bits per data pixel
- NAXIS = data axes
- NAXIS1 = data axis 1
- NAXIS2 = data axis 2
- .. EXTEND = dataset may contain extensions

BITPIX

Value Data Representation
8 Character or unsigned binary integer
16 16-bit twos-complement binary integer
32 32-bit twos-complement binary integer
-32 IEEE single precision floating point
-64 IEEE double precision floating point

Mandatory Keywords

- SIMPLE = T/file does conform to FITS standard
- BITPIX = bits per data pixel
- NAXIS = data axes
- NAXIS1 = data axis 1
- NAXIS2 = data axis 2
- .. EXTEND = dataset may contain extensions
- NAXIS = $0-999$
- Number of axes in image file.
- If NAXIS = 0, no data in the extension.
- NAXISn: Number of elements in each axis.

Coordinates

- CRVAL1 = DEGREES
- CRPIX1 = LOCATION
- CDELT1 =
- CROTA1 = ACTUAL AXIS
- CTYPE1 = 'GLON-AIT' / COORDINATE TYPE
- CRVAL2 $=$ DEGREES
- CRPIX2 = LOCATION
- CDELT2 =
- CROTA2 = ACTUAL'AXIS
- CTYPE2 = 'GLAT-AIT'
/ COORDINATE TYPE
- CRVAL1, CRVAL2 are the coordinates of CRPIX1 and CRPIX2.
- CDELT1 and CDELT2 are increments per pixel.
- CROTA1 and CROTA2 are rotation angles.
- CTYPE1, CTYPE2 are projections.

Projections

- GLON, GLAT
- RA--, DEC-
- ELON, ELAT, HLON, HLAT, SLON, SLAT
- -AIT
- -TAN
- 8 characters
- Galactic, celestial, ecliptic, helioecliptic, supergalactic.
- Aitoff
- Tan

Map Projections

- Aitoff Equal area.
- Pixel area is kept constant over the entire sky.

Gnomonic Projection

- -TAN
- Great circles are straight lines centered on point.
- Distortion increases with distance from center.

Other Values

- CTYPE2 = 'GLAT-AIT'
- TELESCOP= 'GALEX '
- INSTRUME= 'GALEX ,
- FILTER = 'FUV
- DATAMIN = value
- DATAMAX =
11617.88 / Maximum data value
- DATE-OBS= '2003-06-07T05:02:29' / Start of first observation in mission
- EXPSTART= 52797.21006 / MJD start of first
observation in mission
- EXPEND = 54980.24569 / MJD end of last observation in mission
- RESOLUTI=
0.1/Spatial Resolution
- RESUNIT = 'Degrees '.........-spatial.Resolution unit
/ COORDINATE TYPE / GALEX s/c
/ GALEX instrument
/ GALEX Band

1. / Minimum valid data
,

- HLSPLEAD= 'Jayant Murthy'. / Project lead
- PR_INV_L= 'Murthy ' / Pl Last Name
- PR_INV.F= 'Jayant ' / Pl First Name
- HLSPNAME= 'uv-bkgd ' / Name of HLSP project
- CITATION= 'Murthy 2014 ApJS 213, 32' / Citation
- HISTORY make_map_2 Version 1.0
- COMMENT Based on data at HLSP URL
- COMMENT http://www.iiap.res.in/personnel/murthy/Jay ant Murthy/Home.html

Extensions

- Each has an independent header.
- Defined name and number of bits specified.
- Header listing for HDU \#2:
- XTENSION= 'IMAGE . /IMAGE extension
- BITPIX = data pixel
- NAXIS =
- NAXIS1 =
- NAXIS2 =
- PCOUNT = must = 0
- GCOUNT = must = 1
-32 / number of bits per
2 / number of data axes
3600 / length of data axis 1
1800 / length of data axis 2
0 / required keyword;
1 / required keyword;
- END

Programming finally

Q10901010031alif4ttagfcal.fit.gz
hlsp_uv-bkgd_galex_map_allsky_fuv_v1_skymap.fits.gz
\$pwd
/Users/jayanth/user/education/course/data_analysis/data_files \$gdl

GDL - GNU Data Language, Version 0.9.5
For basic information type HELP,/INFO
No startup file read (GDL_STARTUP/IDL_STARTUP env. var. not set).
Please report bugs, feature or help requests and patches at:
http://sourceforge.net/projects/gnudatalanguage/
GDL> im=mrdfits("hlsp_uv-bkgd_galex_map_allsky_fuv_v1_skymap.fits.gz", $0, h d r$)
\% Compiled module: MRDFITS.
\% Compiled module: FXPOSIT.
\% Compiled module: MRD_HREAD.
\% Compiled module: SXPAR.
\% Compiled module: FXPAR.
\% Compiled module: GETTOK.
\% Compiled module: VALID_NUM. MRDFITS: Image array $(3600,1800)$ Type=Real*4 \% Compiled module: MRD_SKIP. GDL>

GDL> hprint,hdr SIMPLE BITPIX $=$ NAXIS $=$ NAXIS1 $=$ NAXIS2 = EXTEND = COMMENT COMMENT
CRVAL1 $=$
CRPIX1 = CDELT1 $=$ CROTA1 $=$ CTYPE1 $=$ 'GLON-AIT'
CRVAL2
CRPIX2 =
CDELT2 = CROTA2 $=$ CTYPE2 $=$ 'GLAT-AIT' TELESCOP= 'GALEX
INSTRUME = 'GALEX
FILTER = 'FUV
DATAMIN =
DATAMAX =
DATE-OBS=

1. gdl
T/file does conform to FITS standard
-32 / number of bits per data pixel
2 / number of data axes
3600 / length of data axis 1
1800 / length of data axis 2
T / FITS dataset may contain extensions
FITS (Flexible Image Transport System) format is defined in 'Astronomy and Astrophysics', volume 376, page 359; bibcode: 2001A\&A...376..359H
2. / REF POINT VALUE IN DEGREES
3. / REF POINT PIXEL LOCATION
-0.1 / DEGREES PER PIXEL
4. / ROTATION FROM ACTUAL AXIS
/ COORDINATE TYPE
5. / REF POINT VALUE IN DEGREES
6. / REF POINT PIXEL LOCATION
0.1 / DEGREES PER PIXEL

0 . / ROTATION FROM ACTUAL AXIS
/ COORDINATE TYPE
/ GALEX s/c
/ GALEX instrument
/ GALEX Band

1. / Minimum valid data value
11617.88 / Maximum data value
'2003-06-07T05:02:29' / Start of first observation in mission

Displaving FITS image
 2. bash

oplot,[1800,1800], [0,1800], col=255
endfor
grid_gb $=$ findgen(180) -90
for $i=-180,180,30$ do begin
$a d x y, h d r, f l \operatorname{tarr}\left(n_{-} e l e m e n t s\left(g r i d _g b\right)\right)+i, g r i d _g b, x, y$
oplot, x, y, col $=255$
endfor
$a d x y, h d r, f l \operatorname{tarr}\left(n _e l e m e n t s\left(g r i d _g b\right)\right)-179.99, g r i d _g b, x, y$
oplot, x, y, col $=255$
for $i=-180,180,30$ do begin
$a d x y, h d r, i, 0, x, y$
xyouts, x, y, strcompress(i)
endfor
for $j=-90,90,30$ do begin
adxy,hdr, $0, j, x, y$
xyouts, x, y, strcompress (j)
endfor
grid_gb $=$ findgen(180) -90
for $i=-180,180,30$ do begin
$a d x y, h d r, f l \operatorname{tarr}\left(n_{-}\right.$elements(grid_gb))+i,grid_gb,x,y
oplot, x, y, col=255
endfor
$a d x y, h d r, f l \operatorname{tarr}\left(n_{-}\right.$elements(grid_gb))-179.99, grid_gb, x, y oplot, x, y, col=255

fits_plot.pro

spica_gl=316.1123
spica_gb=50.8446
adxy,hdr,spica_gl,spica_gb,x,y xyouts, $x, y, ' x$ ', col=65535
xyouts, $x+5, y$, 'Spica' , col $=65535$ end
grid_gl = $180-$ findgen(360)
grid_gl(n_elements(grid_gl)-2)=-179.999
grid_gb $=$ findgen(6)*30-90
for $i=0, n_{-}$elements(grid_gb)-1 do begin
$a d x y, h d r$, grid_gl, fltarr(n_elements(grid_gl))+grid_gb(i), x, y oplot, x, y, col=255 endfor

