Interstellar Dust

Jayant Murthy Indian Institute of Astrophysics jmurthy@yahoo.com murthy@iiap.res.in http://www.iiap.res.in

Interstellar Dust

- Extinction. ۲
- Absorption. ۲
- Scattering. 9
- $= C_{abs} +$ ۲ sca
- /C_{ext} albedo =9

- Extinction.
 - Absorption +
 - Scattering.
- Measure B and V.
- $E(B V) = (B V)_{O} (B V)_{I}$
 - E(B-V) > 0
- $A_{\lambda} = 2.5 \log(F_{O} F_{*}) =$ 2.5log(e^{-\tau}) = 1.086\tau

- Extinction.
- Pair method
 - compare stars of similar spectral types.
 - use models instead of comparison stars.

- Extinction.
- Three populations:
 - Linear.
 - 2175 Å bump.
 - FUV rise.

- Extinction.
- Define $R_{V} \equiv A_{V}/(A_{B} - A_{V})$
- where A_v is the extinction at V.

•
$$E(B-V) = A_B - A_V$$

- Extinction.
- Milky Way: R = 3.1
- Dense regions have larger R

Band	$\lambda(\mu m)$	A_{λ}/A_{I_C}	Band	$\lambda(\mu{ m m})$	A_{λ}/A_{I_C}
M	4.75	0.0573	i	0.7480	1.125
L'	3.80	0.0842	R_C	0.6492	1.419
L	3.45	0.101	R_J	0.6415	1.442
K	2.19	0.212	r	0.6165	1.531
H	1.65	0.315	V	0.5470	1.805
J	1.22	0.489	g	0.4685	2.238
z	0.893	0.830	B	0.4405	2.396
I_J	0.8655	0.879	U	0.3635	2.813
I_C	0.8020	1.000	u	0.3550	2.867

- Extinction.
- Parameterization of extinction curves
- Fitzgerald and Massa
- 7 parameter fit:
 - 3 bump
 - 3 UV extinction
 - 1 for long wavelength law.

- Extinction.
- Parameterization of extinction curves
- CCM:

We have fitted the families of extinction laws as functions of $x \ (\equiv 1/\lambda)$ and (1/R) with analytical formulae similar to the expressions of FM86. We find the following interpolation formula, which gives good fits for 3.3 μ m⁻¹ < x < 8 μ m⁻¹ and 2.5 < R < 6.5:

$$\langle A(\lambda)/A(V)\rangle = a(x) + b(x)/R$$
; (1)

where

$$\begin{split} a(x) &= 1.802 - 0.316x - 0.104 / [(x - 4.67)^2 + 0.341] + F_a(x) ; \\ b(x) &= -3.090 + 1.825x + 1.206 / [(x - 4.62)^2 + 0.263] \\ &+ F_b(x) ; \end{split}$$

 $F_a(x) = -0.04473(x - 5.9)^2 - 0.009779(x - 5.9)^3, (x \ge 5.9);$ $F_b(x) = 0.2130(x - 5.9)^2 + 0.1207(x - 5.9)^3, (x \ge 5.9);$ and

$$F_a(x) = F_b(x) = 0$$
, $(x < 5.9)$

- Extinction.
- Long wavelength cutoff at 1 μm
 - implies largest grains ~ 1 μm in size.
 - 2175 Å due to graphitic particles.
 - FUV rise due to population of small particles.

- Extinction.
- Dust and gas well mixed.
- Bohlin, Savage, D
- N(H) = 5.8e21E(B)

) The correlation between the atomic hydrogen column density N(H I) and E(B - V). (b) The correlation rogen column density, $N(H I + H_2) = N(H I) + 2N(H_2)$, and E(B - V). In both (a) and (b), the dashed atios from Table 2. Triangles, stars with high mean densities, $n(H I + H_2) > 1$ atom cm⁻³; circles, cas < 1 atom cm⁻³. Open symbols, stars with uncertain E(B - V) that were omitted in calculating the mean rate

- Extinction.
- Polarization
- Dust grains aligned with magnetic field.

- Extinction.
- Polarization
- Serkowski Law:
- $p(\lambda) =$ $p_{max} \exp(-K \ln^2(\lambda/\lambda_{max}))$
 - $\lambda_{max} = 5500 \text{ Å}$
 - K = 1.15
- $0 < p_{max} < 0.03 A_{V}$

- Extinction.
- Polarization
- Due to grains with shortest axes partially aligned with magnetic field.
- Largest values where magnetic field perpendicular with line of sight.

- Extinction.
- Polarization
- Decreases to UV suggesting that particle sizes approach geometrical optics limit

- Extinction.
- Polarization
- Dust scattering.
- Reflection nebulae.
- Diffuse background light.

- Extinction.
- Polarization
- Dust scattering.
 - Reflection nebulae.
 - Diffuse background light.
- Measure a and $g = \langle \cos \theta \rangle$

- Extinction.
- Polarization
- Dust scattering.
 - Reflection nebulae.
 - Diffuse background light.
- Measure a and $g = \langle \cos \theta \rangle$

- Extinction.
- Polarization
- Dust scattering.
- Thermal emission.
 - Zodiacal light.
 - Galactic light.

- Extinction.
- Polarization
- Dust scattering.
- Thermal emission.
 - Blackbody at long wavelengths.
 - Stochastic at short wavelengths.
 - Line emission.

Figure 21.6 Observed infrared emission per H nucleon from dust heated by the average starlight background in the local Milky Way. Crosses: IRAS (Boulanger & Perault 1988); squares: COBE-FIRAS (Wright et al. 1991); diamonds: COBE-DIRBE (Arendt et al. 1998); heavy curve: IRTS (Onaka et al. 1996; Tanaka et al. 1996). The interpolated dotted line is used to estimate the total power.

- Extinction.
- Polarization
- Dust scattering.
- Thermal emission.
- ERE.
- Small angle X-ray scattering.
- Microwave emission from spinning ultrasmall grains.

NASA, ESA, H. Van Winckel (Catholic University of Leuven) and M. Cohen (University of California, Berkeley)

STScI-PRC04-11

- From Kramers-Kronig relation and extinction curve:
 - $M_{dust}/M_{H} > 0.0083$
- Implies that dust must be comprised of C, O, Mg, Si, S, Fe.

Element	Solar ^a	WIM $F_{\star} = -0.1$	WNM $F_{\star} = 0.1$	$\frac{\text{CNM}}{F_{\star}=0.4}$	Diffuse H ₂ $F_{\star} = 0.8$
C ^b	295.	114.	111.	109.	93.
N	74.	62.	62.	62.	62.
0	537.	592.	534.	457.	372.
Na	2.04	(2.)	(2.)	(2.)	(2.)
Mg	43.7	28.1	17.8	8.9	3.6
Al	2.95	(0.54)	(0.27)	(0.097)	(0.025)
Si	35.5	31.6	18.7	8.5	3.0
S	14.5	14.5	14.5	11.8	5.3
Ca	2.14	(0.39)	(0.20)	(0.070)	(0.018)
Ti	0.089	0.013	0.0052	0.0013	0.0002
Fe	34.7	5.2	2.9	1.19	0.36
Ni	1.74	0.32	0.16	0.057	0.015
$M^{+ c}$	432.	197.	168.	142.	107.

^a From Table 1.4.

^b Gas-phase C abundance from Jenkins (2009) reduced by factor 2 (see text).

^c Photoionizable "metals": $M = C + Na + Mg + Si + S + Fe + 3.9 \times Ni$.

- From Kramers-Kronig relation and extinction curve:
 - $M_{dust}/M_{H} > 0.0083$
- Implies that dust must be comprised of C, O, Mg, Si, S, Fe.

Figure 3 Elemental depletion is plotted versus condensation temperature for a moderately reddened line of sight in (a) and a lightly reddened line of sight in (b). The data are from Morton (1975) for ζ Oph in (a) and Morton (1978) for ζ Pup in (b). These results have been supplemented by more recent estimates

- 28% of dust mass in C.
- 72% in other compounds.
 - silicates.
- Oxygen problem.
 - Missing in some sightlines.
 - Too much in other sightlines.

Table 23.1 Inferred Elemental Composition of Dust toward ζ Oph

X	$(N_X/N_{\rm H})_{\odot} ^{a}$ (ppm)	$N_{X,gas}/N_{\rm H}^{b}$ (ppm)	$\frac{N_{X,{ m dust}}/N_{ m H}}{ m (ppm)}$	$10^3 M_{X,{ m dust}}/M_{ m H}$	
С	295 ± 36	$135 \pm 33^{~d,e}$	160 ± 49	1.92 ± 0.59^{e}	
		$85 \pm 20^{-d,f}$	210 ± 41	2.52 ± 0.49 ^f	
N	74.1 ± 9.0	78 ± 13 ^g	-14 ± 16	0	
0	537 ± 62	295 ± 36^{-d}	242 ± 72	3.87 ± 1.15	
		[383] ^c	$154\pm8~^c$	2.46 ± 0.13 c	
Mg	43.7 ± 4.2	4.9 ± 0.5 g	39 ± 4	0.94 ± 0.10	
AI	2.8 ± 0.2	0.005 ± 0.001 ^h	2.8 ± 0.2	0.08 ± 0.01	
Si	35.5 ± 3.0	$1.7 \pm 0.5^{\ i}$	34 ± 3	0.95 ± 0.08	
S	14.5 ± 1.0	$28 \pm 16^{\ j}$	-14 ± 16	0	
Ca	2.3 ± 0.2	0.0004 ± 0.0001^{-k}	2.2 ± 0.2	0.09 ± 0.008	
Fe	34.7 ± 3.3	0.13 ± 0.01 ^g	35 ± 3	1.96 ± 0.17	
Ni	1.7 ± 0.2	0.0030 ± 0.0002^{j}	1.7 ± 0.2	0.10 ± 0.01	
Total	if $f(C II] 2325) = 4$	1.78×10^{-8} (see text)		9.9 ± 1.3^{c}	
Total	if $f(C II 2325) = 1$	$.0 \times 10^{-7}$ (see text)		10.5 ± 1.3^{f}	
Total	if $f(C II] 2325) = 1$	0×10^{-7} , $N_{\rm O,dust}/N_{\rm H} =$	154 ppm (see text)	$9.1\pm0.6~^{ m c}$	
a As	plund et al. (2009).		g Savage et al. (199	92).	
^b Assuming $N(H) + 2N(H_2) = 10^{21.13 \pm 0.03} \text{ cm}^{-2}$.			^h Morton (1975).		
^c Assuming $N_{O,dust}/N_{H} = 154$ ppm.			⁴ Cardelli et al. (1994).		
^d Cardelli et al. (1993).			^j Federman et al. (1993).		
^e If $f(C II]2325 \text{ Å}) = 4.78 \times 10^{-8}$ (Morton 2003). ^f If $f(C II]2325 \text{ Å}) = 1.00 \times 10^{-7}$ (see text).			^k Crinklaw et al. (1	1994).	

- Meteoritic composition.
 - Presolar grains.
- Selection effects in identification of grains and their survival.

Material	Source	Grain Size (µm)	Abundance ^c (ppm)†
Amorphous silicates	Circumstellar	0.2-0.5	20-3600
Forsterite (Mg ₂ SiO ₄) Enstatite (MgSiO ₃)	Circumstellar	0.2-0.5	10-1800
Diamond		~ 0.002	~ 1400
P3 fraction	Not known		
HL fraction	Circumstellar		
Silicon carbide	Circumstellar	0.1-20	13-14
Graphite	Circumstellar	0.1-10	7-10
Spinel (MgAl ₂ O ₄)	Circumstellar	0.1-3	1.2
Corundum (Al ₂ O ₃)	Circumstellar	0.5-3	0.01
Hibonite (CaAl12O19)	Circumstellar	1-2	0.02

^a Other presolar materials include TiC, MoC, ZrC, RuC, FeC, Si₃N₄, TiO₂, and Fe-Ni metal.

^b See Huss & Draine (2007) for details and references therein.

^c Abundance in fine-grained fraction (= matrix in primitive chondrites).

Silicates

- pyroxene
- olivine
- Oxides
 - Silicon
 - Iron
 - Mg

Table 23.1 Inferred Elemental Composition of Dust toward ζ Oph

X	$(N_X/N_{\rm H})_{\odot} ^{\alpha}$ (ppm)	$\frac{N_{X,gas}/N_{\mathrm{H}}}{(\mathrm{ppm})}^{b}$	$\frac{N_{X,{ m dust}}/N_{ m H}}{ m (ppm)}$	$10^3 M_{X,{ m dust}}/M_{ m H}$	
С	295 ± 36	$135 \pm 33^{~d,e}$	160 ± 49	1.92 ± 0.59^{e}	
		$85 \pm 20^{-d,f}$	210 ± 41	2.52 ± 0.49^{f}	
N	74.1 ± 9.0	$78 \pm 13^{\ g}$	-14 ± 16	0	
0	537 ± 62	295 ± 36^{-d}	242 ± 72	3.87 ± 1.15	
		[383] ^c	$154\pm8~^{c}$	2.46 ± 0.13 c	
Mg	43.7 ± 4.2	$4.9 \pm 0.5 \ ^{g}$	39 ± 4	0.94 ± 0.10	
AI	2.8 ± 0.2	0.005 ± 0.001 ^h	2.8 ± 0.2	0.08 ± 0.01	
Si	35.5 ± 3.0	$1.7 \pm 0.5^{~i}$	34 ± 3	0.95 ± 0.08	
S	14.5 ± 1.0	$28 \pm 16^{\ j}$	-14 ± 16	0	
Ca	2.3 ± 0.2	0.0004 ± 0.0001^{k}	2.2 ± 0.2	0.09 ± 0.008	
Fe	34.7 ± 3.3	0.13 ± 0.01 ^g	35 ± 3	1.96 ± 0.17	
Ni	1.7 ± 0.2	$0.0030 \pm 0.0002^{\ j}$	1.7 ± 0.2	0.10 ± 0.01	
Total	if $f(C II] 2325) = 4$	1.78×10^{-8} (see text)		9.9 ± 1.3^{c}	
Total	if $f(C II 2325) = 1$	1.0×10^{-7} (see text)		10.5 ± 1.3 ^f	
Total	if $f(C II] 2325) = 1$	1.0×10^{-7} , $N_{\rm O,dust}/N_{\rm H} =$	154 ppm (see text)	$9.1\pm0.6~^{c}$	
a As	plund et al. (2009).		g Savage et al. (19	92).	
^b Assuming $N(H) + 2N(H_2) = 10^{21.13 \pm 0.03} \text{ cm}^{-2}$.			^h Morton (1975).		
^c Assuming $N_{O,dust}/N_{H} = 154$ ppm.			ⁱ Cardelli et al. (1994).		
^d Cardelli et al. (1993).			^j Federman et al. (1993).		
^e If $f(C II] 2325 \text{ Å}) = 4.78 \times 10^{-8}$ (Morton 2003).			k Crinklaw et al. (1994).		
f If	$f(CIII)_{2325} Å) = 1$	00×10^{-7} (see text).			

- Solid carbon
 - Graphite.
 - Diamond.
 - Amorphous.
 - Nanoparticles.
- Hydrocarbons
 - PAHs
 - HACs
- Fe.
- Silicon carbide.

Table 23.1 Inferred Element	l Composition of Dust toward ζ	Opł
-----------------------------	--------------------------------	-----

X	$(N_X/N_{\rm H})_{\odot} ^{a}$ (ppm)	$\frac{N_{X,gas}/N_{\mathrm{H}}}{(\mathrm{ppm})}^{b}$	$\frac{N_{X,{ m dust}}/N_{ m H}}{ m (ppm)}$	$10^3 M_{X,{ m dust}}/M_{ m H}$	
С	295 ± 36	$135 \pm 33^{~d,e}$	160 ± 49	1.92 ± 0.59^{e}	
		$85 \pm 20^{-d,f}$	210 ± 41	2.52 ± 0.49 f	
N	74.1 ± 9.0	78 ± 13 ^g	-14 ± 16	0	
0	537 ± 62	295 ± 36^{-d}	242 ± 72	3.87 ± 1.15	
		[383] ^c	$154\pm8~^{c}$	2.46 ± 0.13 c	
Mg	43.7 ± 4.2	4.9 ± 0.5 ^g	39 ± 4	0.94 ± 0.10	
AI	2.8 ± 0.2	0.005 ± 0.001 ^h	2.8 ± 0.2	0.08 ± 0.01	
Si	35.5 ± 3.0	1.7 ± 0.5^{i}	34 ± 3	0.95 ± 0.08	
S	14.5 ± 1.0	$28 \pm 16^{\ j}$	-14 ± 16	0	
Ca	2.3 ± 0.2	0.0004 ± 0.0001 k	2.2 ± 0.2	0.09 ± 0.008	
Fe	34.7 ± 3.3	0.13 ± 0.01 ^g	35 ± 3	1.96 ± 0.17	
Ni	1.7 ± 0.2	0.0030 ± 0.0002^{j}	1.7 ± 0.2	0.10 ± 0.01	
Total	f(C II] = 4	1.78×10^{-8} (see text)		9.9 ± 1.3^{c}	
Total	if f(CII]2325) = 1	$.0 \times 10^{-7}$ (see text)		10.5 ± 1.3^{f}	
Total	$\inf f(C \Pi 2325) = 1$	$.0 \times 10^{-7}$, $N_{\rm O,dust}/N_{\rm H} =$	154 ppm (see text)	$9.1\pm0.6~^{ m c}$	
a As	plund et al. (2009).		g Savage et al. (199	92).	
^b Assuming $N(H) + 2N(H_2) = 10^{21.13 \pm 0.03} \text{ cm}^{-2}$.			^h Morton (1975).		
^c Assuming $N_{O, dust}/N_{H} = 154$ ppm.			ⁱ Cardelli et al. (1994).		
^d Cardelli et al. (1993).			^j Federman et al. (1993).		
^e If $f(C II]_{2325} \text{ Å}) = 4.78 \times 10^{-8}$ (Morton 2003).			^k Crinklaw et al. (1994).		
f If	$f(CIII)_{2325} Å) = 1.$	00×10^{-7} (see text).			

2175 Å Feature

 Strong feature described by Drude profile.

$$\begin{split} C_{\rm abs} &= \frac{\langle P \rangle}{\langle u \rangle c} = \frac{4\pi q^2}{mc} \frac{\gamma \omega^2}{(\omega - \omega_0)^2 (\omega + \omega_0)^2 + \gamma^2 \omega^2} \\ &= \frac{4\pi q^2}{mc} \frac{\gamma}{\omega_0^2 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2 + \gamma^2} \quad . \end{split}$$

- Central λ constant.
 - Width changes.
- Possibly inter-band transitions in carbon sheets.

PAH Bands

 IR emission at 3.3, 62, 7.7, 8.6, 11.3, 12.7 μm from PAHs.

PAH Bands

- IR emission at 3.3, 62, 7.7, 8.6, 11.3, 12.7 µm from PAHs.
- Lines are from C-H bending and stretching modes.
- 15% of carbon in PAHs
- Thermal IR emission from stochastic heating of grains.

Silicates

- Absorption at 9.7 and 18 μm.
 - Silicate (SI-O) features.
- Profile is broad and smooth => amorphous.

Figure 23.6 Spectra of the Galactic Center (Sgr A*), and two infrared sources GCS3 and GCS4 located near the Galactic Center. In all cases there is strong absorption in the 9.7 μ m silicate feature, with associated weaker absorption in the 18 μ m feature. There is also absorption in the 3.1 μ m feature of H₂O ice toward Sgr A*, with weaker ice absorption seen toward GCS 3. From Kemper et al. (2004), reproduced by permission of the AAS.

Diffuse Interstellar Bands

• We don't talk about them.

Figure 23.3 Extinction at wavelength λ (relative to the extinction at $I_C = 8020$ Å) for 6667 Å > $\lambda > 5714$ Å, showing some of the diffuse interstellar bands, based on the compilation by Jenniskens & Desert (1994).

Summary of Dust Composition

- Refractory elements are depleted onto dust.
 - Oxygen uncertain
- Carbon in the form of
 - graphite
 - diamond
 - PAHs
 - HACs.
 - SiC
 - Fullerenes

- Silicates.
- Ices in dark clouds.
 - Not in diffuse ISM.
- Thermal emission in IR.

Interstellar Dust Models

- MRN dust model
 - $dn/da \sim a^{-3.5}$
- Draine & Lee (1984)

- Amorphous silicates.
- Carbonaceous grains.
 - PAH-like for small grains.
 - Graphite-like for large grains.

Size Distribution

Figure 23.10 Size distributions for silicate and carbonaceous grains for dust models from (a) Weingartner & Draine (2001*a*), (b) Zubko et al. (2004), and (c) Draine & Fraisse (2009). The quantity plotted, $(4\pi a^3/3) dn/d \ln a$ is the grain volume per H per logarithmic interval in *a*. In each case, tick-marks indicate the "half-mass" radii for the silicate grains and carbonaceous grains.

Extinction Models

Figure 23.11 Upper: Average observed extinction for $R_V = 3.1$ (Fitzpatrick 1999) and extinction curves calculated for the WDO1 silicate-carbonaceous model (Weingartner & Draine 2001*a*) and for the ZDA04 BARE-GR-S silicate-carbonaceous model (Zubko et al. 2004). The WD01 model provides considerably more extinction in the infrared (1 to 4 μ m) than the ZDA04 model (see text). Lower: Separate contributions of silicate and carbonaceous grains.

Dust Formation and Evolution

- Formed in outer atmospheres of post main sequence stars.
 - Shell from T ~ 1000 K out to end of stellar atmosphere.
 - Refractive elements condense onto grains.
 - Olivine, silicates.
 - Much of C, N, O locked up in the gas phase.

Dust Formation and Evolution

- Increase by coagulation.
- Gas molecules sticking to the surface.
- Grain growth encouraged in dense regions.
 - Icy mantles.
 - Surface organics.
- Evaporation in high radiation environments.
- Shock destruction of grains.

Temperatures

- Absorption or emission of photons.
- Inelastic collisions with grains/atoms/molecules.
- Large grains will absorb radiation and reradiate as heat.

- Classical (large) grains.
 - responsible for optical extintion.
- Small grains/large molecules.
 - FUV extinction.

Absorption by Dust

• Rate of heating:

$$\left(\frac{dE}{dt}\right)_{\rm abs} = \int \frac{u_{\nu}d\nu}{h\nu} \times c \times h\nu \times Q_{\rm abs}(\nu)\pi a^2$$

 number density x energy x crosssection

Figure 24.1 Absorption efficiency $Q_{abs}(\lambda)$ divided by grain radius *a* for spheres of amorphous silicate (left) and graphite (right). Also shown are power-laws that provide a reasonable approximation to the opacity for $\lambda \gtrsim 20 \ \mu m$.

Absorption by Dust

• Rate of heating:

 $\left(\frac{dE}{dt}\right)_{\rm abs} = \int \frac{u_{\nu}d\nu}{h\nu} \times c \times h\nu \times Q_{\rm abs}(\nu)\pi a^2$

- number density x energy x crosssection
- Spectrum averaged crosssection.
 - Use MMP ISRF.
- $dE/dt = \langle Q_{abs} \rangle \pi a^2 uc$

Collisional Heating

- Rate of heating:
- assuming Maxwellian velocities
- Mean speed:
- α: degree of inelasticity
- Collisional heating unimportant except in dark clouds.

$$\left(\frac{dE}{dt}\right)_{\rm gas} = \sum_i n_i \left(\frac{8kT_{\rm gas}}{\pi m_i}\right)^{1/2} \pi a^2 \times \alpha_i \times 2k(T_{\rm gas} - T_{\rm dust})$$

$$f(v) = \sqrt{\left(\frac{m}{2\pi kT}\right)^3} 4\pi v^2 \exp\left(\frac{-mv^2}{2kT}\right)$$

$$\langle v \rangle = \int_0^\infty v \; f(v) \, dv = \sqrt{\frac{8kT}{\pi m}} = \sqrt{\frac{8RT}{\pi M}} = \frac{2}{\sqrt{\pi}} v_p$$

Radiative Cooling

- Thermal emission in IR
- Q correction factor for non-BB emission.
- In steady state:

$$\left(\frac{dE}{dt}\right)_{\rm emiss.} = \int d\nu \; 4\pi B_{\nu}(T_d) C_{\rm abs}(\nu) = 4\pi a^2 \langle Q_{\rm abs} \rangle_{T_d} \sigma T_d^4 \; ,$$

$$\langle Q_{\rm abs} \rangle_T \equiv \frac{\int d\nu B_\nu(T) Q_{\rm abs}(\nu)}{\int d\nu B_\nu(T)}$$

$$4\pi a^2 \langle Q_{\rm abs} \rangle_{T_{\rm ss}} \sigma T_{\rm ss}^4 = \pi a^2 \langle Q_{\rm abs} \rangle_{\star} u_{\star} c$$

Radiative Cooling

- Thermal emission in IR
- Q correction factor for non-BB emission.
- In steady state:

 $4\pi a^2 \langle Q_{\rm abs} \rangle_{T_{\rm ss}} \sigma T_{\rm ss}^4 = \pi a^2 \langle Q_{\rm abs} \rangle_\star u_\star \ c$

Figure 24.4 Equilibrium temperature for astrosilicate and carbonaceous grains heated by starlight with the spectrum of the local radiation field, and intensity U times the local intensity. Also shown are the power-laws $T = 16.4U^{1/6} K$ and $T = 22.3U^{1/6}$ for $a = 0.1 \mu m$ from Eqs. (24.19 and 24.20).

Radiative Cooling

- Thermal emission in IR
- Q correction factor for non-BB emission.
- In steady state:

 $4\pi a^2 \langle Q_{\rm abs} \rangle_{T_{\rm ss}} \sigma T_{\rm ss}^4 = \pi a^2 \langle Q_{\rm abs} \rangle_\star u_\star c$

Stochastic heating from small grains.

Figure 24.5 Temperature versus time during 10^5 s (Ø 1 day) for five carbonaceous grains in two radiation fields: the local starlight intensity (U = 1; left panel) and 10^2 times the local starlight intensity ($U = 10^2$; right panel). The importance of quantized stochastic heating is evident for the smaller sizes.

Thermal Emission from Grains

• 30% of starlight reradiated in IR.

Figure 24.7 Infrared emission spectrum for model with silicate and graphite/PAH grains in ISRF intensity scale factor U from 0.1 to 10^4 (U = 1 is the local ISRF). Spectra are scaled to give power per H nucleon per unit U, calculated using the model of Draine & Li (2007).

Grain Charging

• Grains may be charged.

- More collisions with electrons so negatively charged.
- Photoionization drives grains to positive potentials.

Figure 25.3 Time-averaged potential U as a function of grain size for silicate and carbonaceous grain $\frac{1}{2}$ for 3 different environments: CNM, WNM, and WIM. Also shown are potentials for $Z = \pm 1$; away from the (shaded) region bounded by these two curves, charge quantization is of secondary importance.