## Measurements

Jayant Murthy<br>Indian Institute of Astrophysics jmurthy@yahoo.com murthy@iiap.res.in http://www.iiap.res.in

## Some Resources

- http://ipag.osug.fr/~philybla/teaching/phy553b.html
- http://www.astro.princeton.edu/~draine/book/index.html
- http://www.physics.sfsu.edu/~lea/
- http://spiff.rit.edu/classes/
- http://home.strw.leidenuniv.nl/~emr/stralingsprocessen/


## Cox ARAA 2005, 43, 337

- The interstellar medium (ISM) is a fascinating place to spend one's life. There is ample beauty in the images, abundant challenge in the observations, good company in the fellow travelers, and a high sense of importance attached to the work as a foundation for understanding how galaxies work, along with the ways they may have influenced one another and the intergalactic medium. There is also sufficient uncertainty about what is happening that it presents a huge canvas for the joyous exercise of imagination.


## Magnitude Scale

- Greeks classified stars by brightness to eye.
- Eye responds in a logarithmic scale.
- Brightest stars classified as $0^{\text {th }}$ magnitude.
- Each magnitude corresponds to a factor of 2.5 in brightness.
- Faintest observable stars about $6^{\text {th }}$ magnitude.

| Sun $\qquad$ |  |  | brightest quasar $\qquad$ | faintest object <br> $\xrightarrow{\longmapsto}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{cc} -25 & -20 \\ \text { vary hrinht } \end{array}$ <br> very bright | $\begin{array}{ll} -15 & -10 \end{array}$ | $-5 \dagger 0$ <br> Sirius | $\begin{aligned} & \text { +10 +15 } \\ & \text { st } \\ & \text { eye } \end{aligned}$ | $+25$ <br> very faint |
| pparent brightnesses of some objects in the magnitude system. |  |  |  |  |

## Magnitude Scale

- Modern magnitude scale:
- Defined by Vega zeroth magnitude A0 star.
- $m=-2.5 \log \left(f_{o b s} / f_{0}\right)$
- Breaks down for UV.
- A0 stars have no flux below $2000 \AA$.


## Zombeck:

http://ads.harvard.edu/cgi-bin/bbrowse?book=hsaa\&page=100

## Magnitude Scale

- Better to use SI units:
- ergs cm ${ }^{-2} \mathrm{~s}^{-1} \AA^{-1}$
- Apparent magnitude observed from Earth.
- Absolute magnitude intrinsic to the star.

Standard photometric systems
Standard U, B, V, R, I and long wavelength systems

| Filter band | $\lambda_{0}{ }^{(0)}(\mu \mathrm{m})$ | $\begin{aligned} & \Delta \lambda_{0} \\ & (\mathrm{FWHM}) \\ & (\mu \mathrm{m}) \end{aligned}$ | Absolute spectral irradiance for mag $=0.0$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & f_{\lambda}(0) \\ & \left(\mathrm{erg} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \AA^{-1}\right) \end{aligned}$ | $\begin{aligned} & f_{v}(0) \\ & \left(\mathrm{W} \mathrm{~m}^{-2} \mathrm{~Hz}^{-1}\right) \end{aligned}$ |
| U | 0.365 | 0.068 | $4.27 \times 10^{-9}$ | $1.90 \times 10^{-23}$ |
| B | 0.44 | 0.098 | $6.61 \times 10^{-9}$ | $4.27(4.64)^{(6)} \times 10^{-23}$ |
| $V$ | 0.55 | 0.089 | $3.64 \times 10^{-9}$ | $3.67 \times 10^{-23}$ |
| $R$ | 0.70 | 0.22 | $1.74 \times 10^{-9}$ | $2.84 \times 10^{-23}$ |
| I | 0.90 | 0.24 | $8.32 \times 10^{-10}$ | $2.25 \times 10^{-23}$ |
| J | 1.25 | 0.3 | $3.18 \times 10^{-10}$ | $1.65 \times 10^{-23}$ |
| H | 1.65 | 0.4 | $1.18 \times 10^{-10}$ | $1.07 \times 10^{-23}$ |
| K | 2.2 | 0.6 | $4.17 \times 10^{-11}$ | $6.73 \times 10^{-24}$ |
| $L$ | 3.6 | 1.2 | $6.23 \times 10^{-12}$ | $2.69 \times 10^{-24}$ |
| M | 4.8 | 0.8 | $2.07 \times 10^{-12}$ | $1.58 \times 10^{-24}$ |
| $N$ | 10.2 |  | $1.23 \times 10^{-13}$ | $4.26 \times 10^{-25}$ |

(a) $\lambda_{0}=\int \lambda S(\lambda) \mathrm{d} \lambda / \int S(\lambda) \mathrm{d} \lambda$, where $S(\lambda)$ is the photometer response function.
${ }^{(b)}$ From S. Kleinmann.
$U, B, R, I, N$ values from Allen, C. W., Astrophysical Quantities. The Athlone Press (1973). V, J, H, K, L, M values from Wamsteker, W., Astron. Astrophys., 97, 329 (1981).

The spectral irradiance for a star of a given magnitude is given either by: $\log f_{\lambda}\left(m_{x}\right)=-0.4 m_{x}+\log f_{\lambda}(0)$,
where $f_{\lambda}\left(m_{x}\right)$ is the spectral irradiance in $\mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \AA^{-1}$ of a star of magnitude $\left(m_{x}\right)$ in the $x$ filter band at the mean wavelength $\lambda_{0}(x)$, or $\log f_{v}\left(m_{x}\right)=-0.4 m_{x}+\log f_{v}(0)$,
where $f_{v}\left(m_{x}\right)$ is the spectral irradiance in $\mathrm{W} \mathrm{m}^{-2} \mathrm{~Hz}^{-1}$
The relationships above are for the irradiance at the top of the Earth's atmosphere and are valid for $B$ through $M$ stars.

Photometer response curves for UBVRI and long wavelength systems. (Adapted from Webbink, R. F. \& Jeffers, W. Q., Space Sci. Rev., 10, 191 1969.)


## Apparent/Absolute Magnitude

- Absolute magnitude is brightness of star at 10 pc.
- Apparent magnitude is observed brightness.
- $\mathrm{F}=\mathrm{L} / 4 \pi \mathrm{~d}^{2}$
- $\mathrm{m}_{1}-\mathrm{m}_{2}=-2.5 \log \left(\mathrm{~F}_{1} / \mathrm{F}_{2}\right)$
- $m_{1}-m_{2}=$
$-2.5 \log \left(\mathrm{~d}_{2} / \mathrm{d}_{1}\right)^{2}=$
$-5 \log \left(\mathrm{~d}_{2} / \mathrm{d}_{1}\right)$



## Apparent/Absolute Magnitude

- Absolute magnitude is brightness of star at 10 pc.
- Apparent magnitude is observed brightness.
- $F=L / 4 \pi d^{2}$
- $\mathrm{m}-\mathrm{M}=5=>\mathrm{F} / \mathrm{f}=100$.

$$
\text { - } \mathrm{d}=10 \mathrm{D}
$$



- Distance Modulus:
- $\mathrm{m}-\mathrm{M}=5 \operatorname{logd}-5$


## Reddening

- Measure B and V magnitudes.
- B: $4400 \pm 500 \AA$.
- V: $5500 \pm 500 \AA$.
- Star has intrinsic (B-V)
- $(\mathrm{B}-\mathrm{V})_{\mathrm{I}}=0$ for A 0 stars.
- $\mathrm{E}(\mathrm{B}-\mathrm{V})=(\mathrm{B}-\mathrm{V})_{\mathrm{O}}-$ $(\mathrm{B}-\mathrm{V})_{\mathrm{I}}$.
- $\mathrm{A}_{\mathrm{V}}=3.1 \mathrm{E}(\mathrm{B}-\mathrm{V})=$ $1.086 \tau$
- Distance Modulus: $\left(m_{v}-A_{v}\right)-M_{v}=5 \operatorname{logd}-5$


## Spectrographs


$\mathrm{n} \lambda=\mathrm{d}(\sin (\mathrm{i})+\sin (\mathrm{I}))$

## Solar Spectrum



## Solar Spectrum

## Solar Radiation Spectrum



## Spectroscopy



The electron emits or absorbs the energy changing the orbits.

## Grotrian Diagram (Oxygen)



## Atomic Basics

- H I is atomic hydrogen.
- H II is ionized hydrogen - not to be confused with $\mathrm{H}_{2}$.
- O VI is $\mathrm{O}^{+5}$ - five times ionized oxygen.
- Atomic energy levels: $\mathrm{n}, 1$ where $0 \leq 1<\mathrm{n}$.
- n : energy; $1:$ angular momentum
- $\mathrm{s}, \mathrm{p}, \mathrm{d}, \mathrm{f}$ for $\mathrm{l}=0,1,2,3$


## Atomic Basics

- Atomic energy levels: $\mathrm{n}, \mathrm{l}$ where $0 \leq 1<\mathrm{n}$.
- n : energy; 1: angular momentum
- $\mathrm{s}, \mathrm{p}, \mathrm{d}, \mathrm{f}$ for $\mathrm{l}=0,1,2,3$
- Degenerate quantum numbers
- $\mathrm{m}_{\mathrm{z}}$ : projection of angular momentum onto z axis.
- spin of electron.
- Pauli Exclusion Principle.
- Degeneracy: 2(21 + 1).
- C: $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}$.


## Periodic Table

|  | Abridged Periodic Table of the Elements |  |  |  |  |  |  |  | He $1 \mathrm{~s}^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 \mathrm{~s}^{1}$ |  |  |  | 3A | A | 5A | 6 A |  |  |
| $\mathbf{L s}_{\mathbf{s s}^{2} 2 \mathrm{~s}^{1}}$ | $\underset{{ }_{1 s^{2}} \mathrm{zs}^{2}}{\mathrm{Be}}$ |  | $1 \mathrm{~s}^{2}$ | $\begin{gathered} \mathbf{B}^{5} \\ 2 s^{2} 2 \mathbf{p}^{1} \end{gathered}$ | $\underset{2 s^{2} 2 p^{2}}{\mathbf{C}^{6}}$ | $\begin{gathered} N \\ 2 s^{2} 2 p^{3} \end{gathered}$ | $\begin{array}{\|c} O_{2}^{8} \\ 2 s^{2} 2 p^{4} \\ \hline \end{array}$ | $\begin{gathered} \mathbf{F} \\ 2 s^{2} 2 p^{5} \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{Ne}^{10} \\ 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} \end{gathered}$ |
| $\begin{gathered} \mathrm{Na}^{11} \\ \mathrm{~N}^{11}{ }^{113 \mathrm{~s}^{1}} \end{gathered}$ | $\begin{gathered} \mathbf{M g}^{12} \\ {[\mathrm{Ne}] 3 \mathrm{~s}^{2}} \end{gathered}$ | 1B | $\begin{gathered} 2 \mathrm{~B} \\ {[\mathrm{Me}]} \\ \hline \end{gathered}$ | $\begin{gathered} \text { AI } \\ \mathbf{s s}^{2} 3 \mathrm{p}^{1} \end{gathered}$ | $\begin{gathered} \mathbf{S i}^{14} \\ \mathbf{S s}^{2} 3 \mathrm{~s}^{2} \end{gathered}$ | $\begin{gathered} P^{15} \\ 3 s^{2} 3 \mathrm{p}^{3} \end{gathered}$ | $\begin{gathered} \mathbf{S}^{16} \\ 3 s^{2} 3 \mathbf{p}^{4} \end{gathered}$ | $\begin{array}{r} \mathrm{Cl}^{17} \\ 3 s^{2} 3 \mathrm{p}^{5} \end{array}$ | $\begin{gathered} \mathrm{Ar}^{18} \\ 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} \end{gathered}$ |
|  | [Ar] ${ }^{\text {a }}$ | $\begin{gathered} \mathrm{Cu} \\ 4 \mathrm{~s}^{1} \end{gathered}$ | $\begin{aligned} & \mathbf{Z n}^{30} \\ & \mathbf{4 s}^{2} \end{aligned}$ | $\underset{\substack{\mathbf{G a} \\ \mathbf{4 s}^{2} \mathbf{4} \mathbf{p}^{1}}}{ }$ | $\begin{gathered} \mathbf{G e}^{32} \\ 4 s^{2} 4 \mathrm{p}^{2} \end{gathered}$ | $\begin{gathered} \mathbf{A s}^{3} \\ 4 \mathrm{~s}^{2} 4 \mathrm{p}^{3} \end{gathered}$ | $\begin{gathered} \mathbf{S e}^{34} \\ 4 \mathbf{s}^{2} 4 \mathbf{p}^{4} \end{gathered}$ | $\begin{array}{r} \mathrm{Br}^{35} \\ 4 \mathrm{~s}^{2} 4 \mathrm{p}^{5} \end{array}$ | $\begin{gathered} \mathbf{K r} \\ \mathbf{4 s}^{2} \mathbf{4 p}^{6} \end{gathered}$ |
| $\begin{gathered} \mathbf{R b}^{37} \\ {\left[{ } ^ { 3 } \left[{ }^{37} 5 s^{1}\right.\right.} \end{gathered}$ |  | $\begin{gathered} \mathrm{Ag}^{47} \\ \mathbf{5 s}^{1} \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{Cd}^{48} \\ \mathrm{Fs}^{2} \\ \hline \end{gathered}$ | $\begin{gathered} \text { In }^{4 s^{2} 5 p^{1}} \\ 5 \end{gathered}$ | $\begin{gathered} \mathbf{S n}^{50} \\ 5 s^{2} 5 \mathrm{p}^{2} \end{gathered}$ | $\begin{gathered} \mathbf{S b}^{51} \\ 5 s^{2} 5 p^{3} \end{gathered}$ | $\begin{array}{\|c} \mathbf{T} \mathbf{e}^{52} \\ 5_{5}{ }^{5} 5 \mathrm{p}^{4} \end{array}$ | $\begin{gathered} 1 \\ 5 s^{2} 5 p^{5} \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{Xe} \\ { }_{5 s^{2}}{ }^{54} \mathrm{p}^{64} \end{gathered}$ |
| $\underset{[\mathrm{XXe}]}{\mathrm{Cs}} \mathrm{ss}^{59}$ | $\begin{aligned} & {\left[x^{2 e]}\right.} \\ & 4 f^{4} 5 d^{10} \end{aligned}$ | $\begin{aligned} & \mathrm{Au}^{7} \\ & 6 \mathrm{~s}^{7} \end{aligned}$ | $\underset{\mathbf{6 s}^{2}}{\mathbf{H g}^{80}}$ | $\begin{gathered} \mathrm{TI}^{81} \\ {6 s^{2} 6 \mathrm{p}^{1}}_{81} \end{gathered}$ | $\begin{gathered} \mathbf{P b}^{82} \\ \mathbf{C s}^{2} 6 \mathrm{p}^{2} \end{gathered}$ | $\begin{gathered} \mathrm{Bi}^{83} \\ 6 \mathrm{~s}^{2} 6 \mathrm{p}^{3} \end{gathered}$ | $\begin{gathered} \mathrm{Po}^{84} \\ \mathrm{Ps}^{2} 6 \mathrm{p}^{4} \end{gathered}$ | $\begin{gathered} \mathrm{At}^{85} \\ \text { ss }^{2} 6 p^{5} \end{gathered}$ | $\begin{gathered} \mathbf{R n}^{86} \\ \operatorname{Rs}^{2} 6 p^{66} \end{gathered}$ |

## Selection rules

- The selection rules that apply to one-electron systems are:
- orbital angular momentum: $\Delta \mathrm{l}= \pm 1$
- parity must change between states.
- magnetic quantum number: $\Delta \mathrm{m}=0, \pm 1$
- spin does not change: $\Delta \mathrm{s}=0$ (always true for the H atom)
- total angular momentum: $\Delta \mathrm{j}=0, \pm 1$
- Forbidden transitions violate a selection rule.


## Allowed HI Transitions



Note Selection Rules.
$\qquad$

## Line Broadening

- Uncertainty relationship between E and t.
- Lorentzian: $2 \gamma$ is Einstein A coefficient for

$$
I(v)=I_{0} \gamma \frac{1}{\left(\nu-v_{0}\right)^{2}+(\gamma / 4 \pi)^{2}}
$$ spontaneous transition.

- $1 / \mathrm{A}$ is the lifetime of the state.



## Line Broadening

- Thermal broadening.
- Gaussian.
- FWHM is 2.3548б.
- $\sigma$ is dependent on the Temperature and on turbulence.

$$
\begin{aligned}
& \varphi_{m n}(v)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(v-v_{m n}\right)^{2}}{2 \sigma^{2}}\right) \\
& 2 \sigma^{2}=\frac{v_{m n}^{2}}{c^{2}}\left(\frac{2 k T_{k}}{M}+V^{2}\right)
\end{aligned}
$$



## Line Broadening

- Uncertainty relationship between E and t .
- Lorentzian.
- Thermal broadening.
- Gaussian.
- Convolution.
- Voigt function.

$$
\begin{aligned}
\varphi(v)= & \frac{2 \sqrt{\ln 2}}{\sqrt{\pi} \Delta v_{D}} H(a, b) \\
a= & \sqrt{\ln 2 \Delta v_{L} /\left(2 \Delta v_{D}\right)} \\
b= & 2 \sqrt{\ln 2}\left(v-v_{0}\right) / \Delta v_{D} \\
H(a, b)= & \frac{a}{\pi} \int \frac{\exp \left(-y^{2}\right) d y}{(b-y)^{2}+a^{2}} \\
& \Delta v_{D} F W H M-\text { Doppler } \\
& \Delta v_{L} F W H M-\text { Lorentzian }
\end{aligned}
$$



## Emission Lines



- Instrumental broadening.
- Typically gaussian.
- Limits information from lines.



## Real Data

## MOLECULAR OXYGEN IN THE INTERSTELLAR MEDIUM



## Spectral Resolution

- Resolution $=\lambda / \Delta \lambda$.
- IUE: Resolution was $0.2 \AA$ at $2000 \AA \Rightarrow \mathrm{R}=10,000$.
- FUSE: R=20,000.
- For small velocities: $\Delta \lambda=\Delta \mathrm{v} / \mathrm{c} \lambda$.
- IUE: $\Delta \mathrm{v}=30 \mathrm{~km} \mathrm{~s}^{-1}$.
- Typical interstellar lines may be $<10 \mathrm{~km} \mathrm{~s}^{-1}$.


## Equivalent Width

- Equivalent width. $W_{\lambda}=\int\left(1-F_{\lambda} / F_{0}\right) d \lambda$
- Same area as line.
- Independent of instrumental broadening.



## Voigt Profiles

FIGURE XA. 2


The equivalent width (equation 11.A.1) is the area above these curves, and it can be seen again that determining the upper limit for $x^{\prime}$ is a problem.

## Curve of Growth

- Equivalent width more robust than modelfitting.
- Easier to measure.



## Curve of Growth

- b is the velocity dispersion
- Dimensional check: ( $\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~K}^{-1} \mathrm{~kg}^{-1} \mathrm{~K}+$ $\left.m^{2} s^{-2}\right) \mathrm{m}^{-2} \mathrm{~s}^{2}$.

$$
\begin{aligned}
& \varphi_{m n}(v)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(v-v_{m n}\right)^{2}}{2 \sigma^{2}}\right) \\
& 2 \sigma^{2}=\frac{v_{m n}^{2}}{c^{2}}\left(\frac{2 k T_{k}}{M}+V^{2}\right)
\end{aligned}
$$



## Radiative Transfer

- Intensity defined such that:
- $\mathrm{dE}=\mathrm{I}_{v} \mathrm{dA} d t \mathrm{~d} \Omega \mathrm{~d} v$ where dE is the energy crossing dA in time dt in the frequency range $d v$
- $\mathrm{I}_{v}$ units are ergs $\mathrm{s}^{-1} \mathrm{~cm}^{-2}$
 $\mathrm{sr}^{-1} \mathrm{~Hz}^{-1}$


## Definitions

- If LTE then

$$
I_{\nu}=\frac{2 h \nu^{3}}{c^{2}} \frac{1}{e^{\frac{h \nu}{k T}}-1}
$$

- Brightness temperature
- $\mathrm{T}_{\mathrm{B}}(v)$ is temperature at which a blackbody would have the same specific intensity.


## Definitions

- Antenna temperature:
- Linear with intensity and $\sim \mathrm{T}_{\mathrm{B}}$ for $\mathrm{kT}_{\mathrm{A}} \gg \mathrm{h} \nu$
- Excitation temperature of $u$ relative to $l$.
- where n is number, g is degeneracy and $E$ is energy of upper and lower states.


## Radiative Transfer

$\mathrm{dE}=\mathrm{I}_{\mathrm{v}} \mathrm{dA} \mathrm{dt} \mathrm{d} \Omega \mathrm{d} v=$ $\mathrm{I}_{\lambda} \mathrm{dA} \mathrm{dt} \mathrm{d} \Omega \mathrm{d} \lambda$
$\mathrm{I}_{v} \mathrm{~d} v=\mathrm{I}_{\lambda} \mathrm{d} \lambda$
$v=\mathrm{c} / \lambda \Rightarrow \mathrm{d} v=\mathrm{c} / \lambda^{2} \mathrm{~d} \lambda$ $\mathrm{c} / \lambda^{2} \mathrm{I}_{\mathrm{v}}=\mathrm{I}_{\lambda}$
dimensional check:

$\left(\mathrm{m} \mathrm{s}^{-1}\right)\left(\mathrm{m}^{-2}\right)\left(\operatorname{ergs~s}^{-1} \mathrm{~m}^{-2} \mathrm{sr}^{-1} \mathrm{~Hz}^{-1}\right)=$ $\operatorname{ergs~s} \mathrm{s}^{-1} \mathrm{mr}^{-1} \mathrm{~m}^{-1}$ ©

## Radiative Transfer

- Spontaneous emission coefficient $j$.
- $j$ is energy emitted per unit time per unit solid angle per unit volume.
- $\mathrm{dE}=\mathrm{j} \mathrm{dV} \mathrm{d} \Omega \mathrm{dt}$
- $\mathrm{dI}_{v}=j_{v} \mathrm{ds}$



## Radiative Transfer

- Absorption coefficient: $\alpha_{v}=n \sigma_{v}$
- $\mathrm{dI}_{v}=-\alpha_{v} \mathrm{I}_{v} \mathrm{ds}$



## Radiative Transfer

- Equation of radiative transfer:
$\mathrm{dI} / \mathrm{ds}=-\alpha_{v} \mathrm{I}_{v}+\mathrm{j}_{v}$
- Define: optical depth: $\mathrm{d} \tau_{v}=\alpha_{v}$ source function: $\mathrm{S}_{v}=\mathrm{j}_{v} / \alpha_{v}$
- $\mathrm{dI}_{v} / \mathrm{d}_{\mathrm{v}}=-\mathrm{I}_{v}+\mathrm{S}_{\mathrm{v}}$

$$
I_{\nu}=I_{\nu(0)} e^{-\tau_{\nu}}+\int_{0}^{\tau_{\nu}} e^{-\left(\tau_{\nu}-\tau_{\nu}^{\prime}\right)} S_{\nu}\left(\tau_{\nu}^{\prime}\right) d \tau_{\nu}^{\prime}
$$

## Kirchoff's Law

- Infinite uniform slab: $\mathrm{I}_{v}=\mathrm{B}_{v}(\mathrm{~T})$
- $\mathrm{dI}_{v}=0=-\mathrm{B}_{v} \mathrm{~d} \tau_{v}+\mathrm{S}_{\mathrm{v}} \mathrm{d} \tau_{v}$.
- Kirchoff's Law: $\mathrm{S}_{v}=\mathrm{j}_{v} / \alpha_{v}=\mathrm{B}_{v}(\mathrm{~T})$

$$
I_{\nu}=I_{\nu(0)} e^{-\tau_{\nu}}+\int_{0}^{\tau_{\nu}} e^{-\left(\tau_{\nu}-\tau_{\nu}^{\prime}\right)} S_{\nu}\left(\tau_{\nu}^{\prime}\right) d \tau_{\nu}^{\prime}
$$

## Limiting Cases

- Optical/UV
- All atoms in ground state so spontaneous emission may be neglected.
- In ground state because no collisional excitation.
- Radio
- Upper levels are populated and spontaneous emission important.
- If population inversion, maser occurs.


## Transitions

- Spontaneous emission: Energy drops from upper state to lower state.
- Einstein A coefficient $\mathrm{A}_{21}$ : transition probability per unit time.
- Random process independent of radiation field.


## Transitions

- Absorption dependent on the number of absorbers and the strength of the radiation field:

$$
\frac{d n_{2}}{d t}=n_{1} B_{12} u_{\nu}
$$

- where $\mathrm{n}_{2}$ is the number in upper state; $\mathrm{u}_{\mathrm{v}}$ is the radiation density and $B_{12}$ is the Einstein $B$ coefficient.
- For stimulated emission replace $B_{12}$ with $B_{21}$.


## Relation between Einstein coefficients

- In thermodynamic equilibrium:
- $\mathrm{n}_{1} \mathrm{~B}_{12} \mathrm{~B}(\mathrm{~T})=\mathrm{n}_{2} \mathrm{~A}_{21}+\mathrm{n}_{2} \mathrm{~B}_{21} \mathrm{~B}(\mathrm{~T})$
- but $\mathrm{n}_{1} / \mathrm{n}_{2}=\mathrm{g}_{1} / \mathrm{g}_{2} \mathrm{e}(\mathrm{h} v / \mathrm{kT})$ where g is the degeneracy factor.
- After algebra: $\quad B(T)=\frac{A_{21} / B_{21}}{\left(g_{1} B_{12} / g_{2} B_{21}\right) \exp (h \nu / k T)-1}$
- But for this to be true for all T:
- $g_{1} B_{12}=g_{2} B_{21}$
- $\mathrm{A}_{21}=2 \mathrm{~h} \nu^{3} / \mathrm{c}^{2} \mathrm{~B}_{21}$


## Einstein Coefficients

- $\alpha_{v}=(h v / 4 \pi)\left(n_{1} \mathrm{~B}_{12}-\mathrm{n}_{2} \mathrm{~B}_{21}\right) \varphi(v)$ where $\varphi(v)$ is the absorption profile
- $\mathrm{j}_{v}=(\mathrm{hv} / 4 \pi) \mathrm{n}_{2} \mathrm{~A}_{21}$ with the assumption that the emission profile is the same as the absorption profile.
- oscillator strength: $\mathrm{B}_{12}=\left(4 \pi^{2} \mathrm{e}^{2}\right) /\left(h \nu_{21} \mathrm{~m}_{\mathrm{e}} \mathrm{c}\right) \mathrm{f}_{12}$
- $\mathrm{g}_{1} \mathrm{f}_{12}=-\mathrm{g}_{2} \mathrm{f}_{21}$


## Curve of Growth



Fig. 5.-Empirical curve of growth for the dominant ion states expected in $\mathrm{H}_{\text {i }}$ clouds. The solid lines were drawn for a Maxwellian velocity distribution with $b=6.5 \mathrm{~km} \mathrm{~s}^{-1}$ and the damping constants appropriate for the lines labeled in the upper right corner. The horizontal scale was labeled to give $\log N\left(\mathrm{~cm}^{-2}\right)$ for Fe II $\lambda 2382$.

## Absorption Line Data

- Two components in Fe II line of $\alpha$ Tri.



## Absorption Line Data

- Two components in Fe II line of $\alpha$ Tri.
- Fit Ly $\alpha$ line with two components.
- D I next to H I line.



## Absorption Line Data

- Two components in Fe II line of $\alpha$ Tri.
- Fit Ly $\alpha$ line with two components.
- D I next to H I line.
- Stellar confusion.


The Astrophysical Journal, 723:1762-1786, 2010 November 10

## O vi IN THE LOCAL INTERSTELLAR MEDIUM

M. A. Barstow ${ }^{1}$, D. D. Boyce ${ }^{1}$, B. Y. Welsh ${ }^{2}$, R. Lallement ${ }^{3}$, J. K. Barstow ${ }^{1,4}$, A. E. Forbes ${ }^{1}$, and S. Preval ${ }^{1}$ ${ }^{1}$ Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK ${ }^{2}$ Experimental Astrophysics Group, Space Sciences Laboratory, University of California Berkeley, Berkeley, CA 94720 , USA Service d'Aéronomie du CNRS, 91371 Verrières-le-Buisson, France
${ }^{4}$ Atmospheric, Oceanic and Planetary Physics, Department of Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK
Received 2009 March 4; accepted 2010 September 13; published 2010 October 26

## ABSTRACT

We report the results of a search for O vi absorption in the spectra of 80 hot DA white dwarfs observed by the FUSE satellite. We have carried out a detailed analysis of the radial velocities of interstellar and (where present) stellar absorption lines for the entire sample of stars. In approximately $35 \%$ of cases (where photospheric material is detected), the velocity differences between the interstellar and photospheric components were beneath the resolution of the FUSE spectrographs. Therefore, in $65 \%$ of these stars the interstellar and photospheric contributions could be separated and the nature of the O VI component unambiguously determined. Furthermore, in other examples, where the spectra were of a high signal-to-noise, no photospheric material was found and any O vi detected was assumed to be interstellar. Building on the earlier work of Oegerle et al. and Savage \& Lehner, we have increased the number of detections of interstellar O vI and, for the first time, compared their locations with both the soft X-ray background emission and new detailed maps of the distribution of neutral gas within the local interstellar medium. We find no strong evidence to support a spatial correlation between O vi and SXRB emission. In all but a few cases, the interstellar OVI was located at or beyond the boundaries of the local cavity. Hence, any $T \sim 300,000 \mathrm{~K}$ gas responsible for the O vi absorption may reside at the interface between the cavity and surrounding medium or in that medium itself. Consequently, it appears that there is much less O vi-bearing gas than previously stated within the inner rarefied regions of the local interstellar cavity. Key words: ISM: clouds - ISM: general - ISM: structure - ultraviolet: ISM - ultraviolet: stars - white dwarfs Online-only material: color figures

## 1. INTRODUCTION

The existence of the diffuse soft X-ray background (SXRB Bowyer et al. 1968) implies that a substantial fraction of the Galactic disk, at least near the Sun, is filled with low-density hot gas (McCammon et al. 1983). This discovery has important implications for our understanding of the structure and ionization of the interstellar medium (ISM) and in subsequent decades further studies have been made of the diffuse background, with a full sky survey being conducted by the ROSAT mission (Snowden et al. 1995, 1998). The total soft X-ray emission has
ergy input of 114 eV . Since the local interstellar radiation field declines steeply at energies above this value (Vallerga 1998), it is very difficult to account for the presence of O vi with a photoionization model. Therefore, the best explanation is that the O VI arises from collisional ionization in gas at a temperature in excess of $2 \times 10^{5} \mathrm{~K}$. This proposition is supported by the relative breadth of the Ovi absorption line profiles, compared to those of lower ionization potential, which are consistent with thermal broadening at this temperature. In this paper, we refer to the $T \sim 300,000 \mathrm{~K}$ material which may be responsible for Ovi absorption as "transition temperature" gas to differentiate


## VLISM



Ta003713

